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Abstract Software metrics measure quantifiable or countable software characteristics. Researchers may apply them
to provide better product understanding, evaluate the process effectiveness, and improve the software quality. A
threshold is a value that aids the proper interpretation of software measurements; it indicates whether or not a
given value represents a quality risk. Thresholds are unknown for most software metrics, inhibiting their use in a
software quality assessment process. In a previous paper, we proposed a catalog with 18 object-oriented software
metrics thresholds, providing a preliminary case study in proprietary software to validate them. This article evaluates
these thresholds more deeply, considering significant aspects. We show a new example of threshold derivation,
discussing it qualitatively. We explain these software metrics and discuss their threshold values, presenting each
one’s application level, definition, formula, and implications for the software design. We conduct a study with
two software systems to evaluate the capacity of our thresholds to identify software quality enhancement after a
restructuring process. We assess these thresholds using two case studies, comparing the evaluation provided by the
thresholds with the qualitative analysis given by manual inspections. The study results indicate that the thresholds
may lead to few false-positive and false-negative occurrences, i.e., the thresholds provide a proper quantitative
assessment of software quality. This study contributes with empirical evidence that the metrics’ thresholds proposed
in our previous work provide a proper interpretation of software metrics and, hence, may aid the application of

software metrics in practice.

Keywords: Object-Oriented Software Metrics, Measurement, Thresholds Catalog, Internal Software Quality, Software

Engineering

1 Introduction

According to Fenton [1994], “measurement is the process by
which numbers or symbols are assigned to attributes of en-
tities in the real world in such a way as to describe them
according to clearly defined rules”. A software metric is a
clearly defined rule that assigns values to software entities,
such as components, classes, methods, or attributes of devel-
opment processes. Object-oriented metrics were proposed in
the early 1990s and are widely used by researchers in propos-
als to evaluate software systems [Chidamber and Kemerer,
1994; Mishra Alok et al., 2021].

Metrics provide quantitative measures to evaluate the qual-
ity of projects, allowing software engineers to make changes
throughout the development process that will increase the
quality of the final product. Each metric measures either an
internal or an external attribute. Someone can measure inter-
nal attributes by observing only the process, product, or re-
source without considering its behavior. External attributes
are attributes that are related to the behavior of software
systems. In this work, the focus is on internal product met-
rics that measure source code. Some examples of internal
attributes that relate to source code are size, cohesion, cou-
pling, and inheritance. The evaluation of software quality via
measurements aids in assessing qualitative attributes quan-
titatively. Metrics are essential in managing the quality of

object-oriented software; moreover, their practical use still
needs to appear in the software systems [Ferreira et al., 2012;
Kitchenham, 2010; Mishra Alok et al., 2021; Radjenovié
etal.,2013].

Despite their importance in software engineering, OO met-
rics still need to be adequately applied in the software indus-
try. The threshold values of most metrics need to be proposed
and validated since software metrics, without their proper
interpretation, may be worthless. Therefore, identifying and
evaluating threshold values for software metrics is vital for
their application. An appropriate software metric threshold
value is an orientation for the developer in maintenance, test-
ing, and evolution tasks.

In our previous work, [Fil6 et al., 2015], we defined thresh-
olds for 18 OO metrics. We preliminary evaluated these
thresholds using a case study with proprietary software. In
that study, we compared the results of a manual evaluation
performed by systems’ development team with the results of
the evaluation of the system by applying the thresholds. The
results suggest that our catalog is an efficient way to evalu-
ate the classes effectively. We also evaluated the correlation
between the thresholds and the occurrences of bad smells in
the system. For this purpose, we used JDeodorant to identify
the bad smells. The results of this analysis also indicate that
our proposed thresholds were useful in identifying bad smells
in the software system we considered. However, our analy-
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sis was limited to a single software system. As Mishra Alok
et al. [2021] concluded in a mapping study on software met-
rics thresholds, “even nowadays, many studies still need to
validate metric threshold values regarding quality attributes.
And still, there is a need to study a more extensive number
of metrics and their thresholds.”

In the present work, we aim to contribute to advancement
in software metrics thresholds evaluation by evaluating a cat-
alog with the threshold for 18 metrics of object-oriented soft-
ware we proposed previously [Fil6 et al., 2015], which, to
our knowledge, is the most extensive number of threshold
metrics existing so far. With thresholds cataloged and vali-
dated, metrics can be effectively applied in the software in-
dustry, allowing the evaluation of software quality automat-
ically. Another possible scenario is using thresholds to eval-
uate the internal software quality, allowing decision-making
in software acquisition processes.

With this in mind, our overall objective described in this
paper is to verify those thresholds’ ability to assess the soft-
ware systems’ internal quality. We aim to provide evidence
of their benefits for object-oriented metrics at class, method,
and package levels, aiding the quantitative evaluation of in-
ternal software quality.

To fulfill our overall goal, we present a deeper evaluation
of these thresholds in seven significant aspects: (1) we give
a detailed description of our method to derive the 18 soft-
ware metrics considered in this research and discuss their pro-
posed thresholds. For each metric, we provide in Appendix
A its application-level -method, class, or package- its def-
inition, formula, and design implications. (2) We exhibit a
new illustrative example of our method application, describ-
ing the data analysis of the McCabe Complexity (VG) met-
ric and a qualitative discussion about it. We conduct a study
with two software systems to evaluate the capacity of our
thresholds to identify software quality enhancement after a
restructuring process. (4) We evaluate these threshold met-
rics with two new case studies using an extensive dataset
of 111 systems also applied in our previous studies on soft-
ware metrics Terra et al. [2013]. These cases compare the
software systems’ quantitative analysis with the qualitative
analysis of manual inspections. Case Study 1 investigates
whether the thresholds may detect poor-quality methods and
classes. Case Study 2 evaluates whether the thresholds may
see high-quality classes and methods. (5) We show that the
empirical evaluation of the results of our thresholds indicates
that applying them will lead to a few false-positive and false-
negative occurrences and, then, may aid a proper quantita-
tive assessment of the software quality. (6) we describe each
method’s qualitative evaluation, and (7) we present the quali-
tative evaluation regarding each class. Items (6) and (7) both
refer to Case Study 1. To perform our study, we formulated
two general-purpose research questions RQ1 and RQ2 and
proposed two specific ones, RQ2.1 and RQ2.2.

RQ1. Does refactoring improves the metric thresholds?
Rationale. With this research question, we investigate
whether the thresholds are sensitive to the changes in
the system’s structure before and after refactoring. As
a refactoring process usually aims to improve the inter-
nal software quality, it is expected that after the refactor-
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ing process, more classes fit in the thresholds’ intervals,
which correspond to good internal quality (Section 7).

RQ2. Are the proposed thresholds able to differentiate poor
and good software quality?
Rationale. We investigated this question in two differ-
ent ways, according to the following specific research
questions (Section 8).

RQ2.1. Can the proposed thresholds detect poor-quality
methods and classes?
Rationale. To answer RQ2.1, we conducted Case Study
1, which consists of comparing the results of a qualita-
tive evaluation given by a manual inspection of methods
and classes, with the results of the quantitative evalua-
tion provided by the threshold (Section 8.1).

RQ2.2 Can the proposed thresholds detect high-quality
methods and classes?
Rationale. To answer RQ2.2, we have conducted Case
Study 2 to verify how the proposed thresholds behave in
the evaluation of a well-designed software system (Sec-
tion 8.2).

We organized the remainder of this paper as follows. Sec-
tion 2 shows how our work relates to existing literature
efforts. Section 3 presents the dataset, the method applied
to collect the metric data, and the dataset preparation for
defining the thresholds. For completeness, Section 4 briefly
presents our previous work, presenting the method applied
to extract the thresholds, its preliminary evaluation, and ex-
hibits the proposed thresholds catalog. Section 5 shows our
method used for the VG metric, illustrating a new example
and discussing its threshold derivation main aspects. Section
6 discusses the technique used to derive the thresholds con-
ducted in this research. Section 7 shows an experiment to
evaluate the thresholds proposed for package metrics as soft-
ware quality indicators in actual object-oriented restructuring
processes. Section 8 presents two case studies to assess the
proposed thresholds. Section 9 discusses the threats to the va-
lidity of this study. Section 10 shows this research’s possible
future directions and presents the final remarks. Appendix A
presents a detailed description of each metric and its thresh-
olds. Appendices B and C, respectively, give the qualitative
evaluation of each method (Section 8.1.1) and each class
(Section 8.1.2), both considered in Case Study 1. Appendix
D presents the metrics’ description.

2 Related Work

Deriving software metrics thresholds is an active research
field [Mishra Alok et al., 2021]. This section discusses the
most relevant works that aimed to derive software met-
rics thresholds by applying statistical properties. Section 2.1
shows the most used metrics by the researchers, and Section
2.2 exhibits some recent studies regarding metrics and thresh-
olds.

2.1 Object-Oriented Metrics

The software metrics may be classified into traditional and
object-oriented. Our work focuses on object-oriented met-
rics. Several metrics with different categories are suggested
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in the literature to evaluate OO software systems. Li and
Henry [1993] proposed the following metrics: MPC (num-
ber of send statements defined in a class), DAC (number of
ADTs defined in a class), NOM (number of local methods),
SIZE1 (number of semicolons in a class), and SIZE2 (num-
ber of attributes + number of local methods). Chidamber
and Kemerer [1994] proposed six CK metrics to measure
the complexity of object-oriented software: NOC (Number
of Children), DIT (Depth of Inheritance Tree), CBO (Cou-
pling between Objects), WMC (Weight Method per Class),
LCOM (Lack of Cohesion in Methods), and RFC (Response
for a class). Li [1998] proposed metrics for class inheritance
and method complexity. NAC (Number of Ancestor Classes),
NLM (Number of Local Methods), CMC (Class Method
Complexity), NDC (Number of Descendent Classes), CTA
(Coupling Through Abstract Data Type), and CTM (Cou-
pling Through Message Passing). Lorenz and Kidd [1994]
defined eleven metrics to calculate the static aspects of soft-
ware design at the class and method level, considering size:
NPM, NM, NPV NV, NCV, NCM; inheritance: NMI, NMO,
NNA; and class internal: APM and SIX. Among these, the
most frequently used are the CK metrics. Our catalog of
thresholds considers 18 of these software metrics defined in
the literature.

2.2 Object-Oriented Metrics Thresholds

Over the years, researchers have been investigating software
metrics in a wide range of approaches, and in many cases,
they used software metrics to assess software evolution and
quality. Also, the studies have shown methods to derive, iden-
tify, or evaluate software metrics thresholds for various cat-
egories of O.0. metrics. “Metric Threshold” refers to a limit
for the metric value that may demand an action or change
in the software system. For example, considering the metric
MLOC (Method Lines of Code), Fil6 et al. [2015] identified
ten as the threshold considered good and 30 as considered
regular. This threshold means that a method should have up
to ten lines preferably, or up to 30 lines, i.e., if a method has
more than 30 lines, the developer should verify the need for
refactoring the method. In tables 1 and 2, the column “Thresh-
old” exhibits how the previous work has defined these limits
for software metrics.

Mishra Alok et al. [2021] state software metrics’ thresh-
olds might be classified into programmer experience, statis-
tical properties, and quality-related properties. Considering
this classification, we exhibit examples of the many avail-
able research studies.

Statistical properties. Many works derive thresholds by
analyzing statistical properties of the software metrics gath-
ered from a corpus of software systems. Some examples of
works in this category: Alves et al. [2010], Aniche et al.
[2016], Benlarbi et al. [2000], Ferreira et al. [2012], Filo
et al. [2015], Gil and Lalouche [2016], Herbold ez al. [2011],
Lochmann [2012], Veado et al. [2016], Malhotra and Bansal
[2015], Mei et al. [2023], Mori [2018], Oliveira et al.
[2014b], Padhy et al. [2021], Shatnawi [2010], Shatnawi
[2015], Shatnawi [2018], Shatnawi and Althebyan [2013],
Singh and Kaur [2014], Stojkovski [2017], Sultan [2021],
Vale et al. [2015], Vale et al. [2019], Vale and Figueiredo
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[2015].

Programmer experience. Some works derive software
metric thresholds by analyzing the relation between the met-
ric values and aspects related to the programmer experience,
e.g., software degradation and occurrences of bad smells in
the source code. Some examples in this category: Berani¢
and Hericko [2017]; Fan et al. [2020]; Sodiya et al. [2012].

Quality related. This category may derive a threshold
by observing the relationship between the software met-
ric values and quality attributes. According to Mishra Alok
et al. [2021], researchers have addressed different quality at-
tributes for threshold calculation. Some examples of works
in this category: Al Dallal [2011], Al Dallal [2012], Al Dal-
lal and Briand [2010], Arar and Ayan [2016], Bigonha et al.
[2019], Boucher and Badri [2016], Boucher and Mourad
[2018], Fontana et al. [2015], Hussain et al. [2016], Lavazza
and Morasca [2016], Malhotra and Bansal [2015], Malho-
tra and Bansal [2017], Mohammed et al. [2019], Mohovi¢
et al. [2018], Oliveira et al. [2014a], Shatnawi ef al. [2009],
Vale et al. [2015]. Mishra Alok et al. [2021] divided qual-
ity attributes of threshold calculation methods into five cate-
gories: fault detection, bad smell detection, reuse proneness,
and other design problems. These quality attributes are de-
scribed as follows.

Fault detection refers to the ability of a method or ap-
proach to identify potential faults or defects in software code.
Detecting faults early in the development process is impor-
tant for improving software reliability and reducing the cost
of fixing defects later on. Examples of works in this cate-
gory includes: Arar and Ayan [2016], Bigonha ef al. [2019],
Boucher and Badri [2016], Boucher and Mourad [2018], Hus-
sain et al. [2016], Lavazza and Morasca [2016], Malhotra
and Bansal [2015], Malhotra and Bansal [2017], Mohovié¢
etal.[2018], Mori [2018], Oliveira et al. [2014a], Rosenberg
et al. [1999], Shatnawi [2010], Shatnawi [2015], Shatnawi
[2018], Shatnawi et al. [2009], Vale et al. [2015].

Bad smells are specific structures in the code that may in-
dicate deeper problems. They are usually not bugs but indica-
tors of poor design or implementation choices. Detecting and
addressing them improves code maintainability, readability,
and extensibility. Examples of works in this category: Al Dal-
lal[2012], Bigonha et al. [2019], Feng et al. [2019], Fild et al.
[2015], Fontana et al. [2015], Sousa et al. [2017], Souza et al.
[2017], Vale ef al. [2019], Vale and Figueiredo [2015].

Reuse proneness refers to how likely a software artifact,
such as a method, class, or module, will be reused in other
parts of the software or other projects. Promoting it helps
to reduce code duplication, improve consistency across the
software, and speed up development by leveraging existing,
tested components. An example in this category is: Padhy
etal.[2021].

Design problems encompasses other aspects of software
design that are critical for its quality but do not directly
fall under fault detection, bad smell detection, or reuse-
proneness. These could include performance bottlenecks due
to poor design decisions or issues related to scalability and se-
curity, etc. Examples of works in this category are: Al Dallal
[2011], Al Dallal and Briand [2010], Benlarbi et al. [2000],
Herbold et al. [2011], Malhotra and Bansal [2015], Malhotra
and Bansal [2017], Shatnawi and Althebyan [2013].
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Considering the categorization of Mishra Alok et al.
[2021], our work is classified as statistical. In the sequel, we
discuss some of the main works that also applied statistical
methods to derive software metrics thresholds.

Benlarbi ef al. [2000] empirically derived thresholds for
the CK metrics, without LCOM, by applying logistic regres-
sion and considering two telecommunication systems written
in C++ to investigate the faults and software metrics connec-
tion.

Alves et al. [2010] proposed a method to identify metric
thresholds from a statistical analysis of a benchmark of soft-
ware systems. They showed thresholds for three metrics at
the method level and two at the class level. They used four
percentiles to define ranges of values to the metric thresholds:
low 70%, moderate 80%, high 90%, and very high >90%.

Shatnawi [2010] used a statistical model derived from the
logistic regression to identify threshold values for the CK
metrics. He analyzed three versions of Eclipse software us-
ing the error data from Bugzilla. The author divided the er-
rors into Low, Medium, and High categories. He identified a
risk level for any arbitrary threshold value.

Al Dallal [2011] proposed values for 12 cohesion metrics
to classes that exhibit exceptional cases, such as having no
attributes, no parameter types for the methods, or fewer than
two methods in the class. He performed an empirical analysis
using classes in four open-source systems from Java. How-
ever, their study did not consider factors that could affect the
study’s results, such as inheritance.

Herbold et al. [2011] defined an approach to calculate
thresholds for a software metric set to evaluate quality at-
tributes. Their approach is purely data-driven and uses ma-
chine learning and data mining techniques. Considering that
a single metric cannot cover all internal attributes such as
structure, size, and complexity, they applied 11 metrics, four
for methods and seven for classes, and did four case studies.

Ferreira et al. [2012] used the graphical analysis of soft-
ware metric distributions to derive the thresholds. In their
method, when the metric has a distribution with an expected
average value, like the Poisson distribution, this value is
taken for that metric; otherwise, they proposed three ranges
for the metric values: Good, Regular, and Bad. The Good
corresponds to values with high frequency. The Bad refers to
values with relatively low frequency, and the Regular refers
to values that are not too frequent nor have a shallow fre-
quency. They applied this method to 40 Java software sys-
tems and defined thresholds for six software metrics. They
analyzed the entire dataset’s software system sizes, applica-
tion domains, and type of software and found no significant
differences in the suggested thresholds among these applica-
tions.

Lochmann [2012] used a benchmark approach where the
calculation of the threshold value for a metric is based on the
metric values of a set of systems, the benchmark base. To see
ifits use influences the software quality assessment result, he
conducted a quality assessment of a series of test systems for
each. He found that considering a randomly generated bench-
mark base of sufficient size, neither the selected systems nor
the size of the systems had a significant influence.

Shatnawi and Althebyan [2013] proposed a statistical as-
sessment of the behavior of software systems conducted on
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metrics for five systems divided into two contexts, four sys-
tems of different sizes, and twelve releases resulting from the
evolution of an open-source system. They found out that the
six metrics showed a potential to follow a power law distribu-
tion, and two metrics did not follow a power law distribution.

Oliveira et al. [2014b] derived thresholds for eight metrics
at the class level. They used the concept of relative thresholds
for evaluating metric data that follows a heavy-tailed distri-
bution, where the values in the “long tail” correspond to the
range. This concept advocates that most source code entities
within a software system should follow a metric threshold,
although some “long tail” entities may not follow them.

Singh and Kaur [2014] proposed a study to derive a thresh-
old metrics value against the bad smell using risk analysis
at five different levels, seven metrics, and three versions of
Firefox as a dataset to validate their study. Results showed
the practical threshold values only for five metrics for predict-
ing the smelly classes in the three releases of Mozilla Firefox.
They also found that the threshold values derived to predict
smelly classes do not indicate whether the class is faulty.

Abilio et al. [2015] conducted exploratory research using
the work of Lanza and Marinescu [2010] and derived the
threshold for eight SPLs developed with AHEAD and 26
participants. They want to propose means to detect three bad
smells in FOP (Feature-Oriented Programming) source code.

Shatnawi [2015] proposed data transformation to improve
two techniques of software quality assessment: derive thresh-
old values and fault classification, using the derived CK met-
rics to reduce the effect of skewness in data, and 11 different
open-source Java projects. He used the natural log function
to transform all metrics. The threshold values are then de-
rived for all log metrics. To evaluate the effectiveness of the
results after transformation, He used the derived thresholds
to classify classes into either faulty or not faulty otherwise.

Arar and Ayan [2016] replicated Shatnawi [2010]’s study
but expanded it to 37 versions from ten open-source software
systems as datasets and 20 metrics. To investigate whether or
not there are effective threshold values for each metric that
support a defining risk categorization of each module, they
defined three risk categories: non-fault-prone, fault-prone,
and three-or-more-fault-prone, and then executed two case
studies to derive two thresholds that support the specified cat-
egories of modules. Using ten datasets as training data by the
model, they created a single set by merging logistic regres-
sion and a previous technique proposed by Bender [1999].
Seven metrics gave good results in the first case study. In the
second, 11 metrics gave acceptable results.

Malhotra and Bansal [2017] made an empirical study to
identify metric threshold values using the Receiver Operat-
ing Characteristic (ROC) Curves for fifteen metrics. They
used five releases of an open-source, Linux-based OS, An-
droid, written in Java, calculated threshold values to identify
change-prone classes for those releases, and validated them
on their immediate successor release. They compared their
study with the traditional methodology based on logistic re-
gression.

Bigonha et al. [2019] evaluated the applicability of the
software metric thresholds of Fil6 ef al. [2015] in the identifi-
cation of the bad smells in Java-based projects: Large Class,
Long Method, Data Class, Feature Envy, and Refused Be-
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quest. Results indicate that these thresholds support the pre-
diction of software faults and effectively detect bad smells.

Sultan [2021] conducted an empirical study using 36
defect-prediction datasets and six metrics, whose objective
was to build predictive models that estimate thresholds based
on system size and assess this approach’s feasibility as a
threshold estimation method. The size—threshold relation-
ships are then examined by analyzing their correlation for
each metric. If such a relationship exists for a metric, a linear
regression model is fitted and used to estimate its thresholds
given only system sizes. The feasibility of this approach is
then assessed based on the accuracy with which the estimated
thresholds identify fault-prone classes.

Mei et al. [2023] empirically examined whether there
are practical threshold values of OO metrics by analyzing
threshold derivation methods with large-scale meta-analysis.
Based on five representative threshold derivation methods
and 3268 releases from 65 Java projects, the authors first em-
ployed statistical meta-analysis and sensitivity analysis tech-
niques to derive thresholds for 62 OO metrics on the train-
ing data. Then, they investigated the predictive performance
of five candidate thresholds for each metric on the valida-
tion data to explore which candidate thresholds served as
the threshold. Finally, they evaluated their predictive perfor-
mance on the test data. The experimental results showed that
26 of 62 metrics have the threshold effect, and the derived
thresholds by meta-analysis achieved promising results in al-
most all five representative baseline thresholds.

To automate the threshold identification process or ex-
tract the metrics, the tool support is necessary. Oliveira et al.
[2014a] described RTTOOL, an open-source tool capable of
extracting relative thresholds for software metrics based on
benchmark collections. The authors illustrated their usage by
deriving relative thresholds for four metrics based on 106
open-source Java systems from the Qualitas Corpus E. Tem-
pero and Noble [2010]. Sousa et al. [2017] proposed Find-
Smells, a tool for bad smell detection in software systems
based on software metrics and their thresholds. Veado et al.
[2016] proposed and implemented the Threshold Derivation
Tool (TDTool), an open-source tool to provide threshold
derivation for software metrics using four different methods:
Ferreira et al. [2012]; Alves et al. [2010]; Oliveira et al.
[2014b] and Vale and Figueiredo [2015].

Our preliminary study [Fil6 et al., 2015] is preceded by
others [Abilio et al., 2015] [Al Dallal, 2011] [Alves et al.,
2010] [Benlarbi et al., 2000] [Ferreira et al., 2012] [Her-
bold et al., 2011] [Lochmann, 2012] [Oliveira et al., 2014b]
[Shatnawi, 2010] [Shatnawi, 2015] [Shatnawi and Althe-
byan, 2013] [Singh and Kaur, 2014]. However, our previous
work differs from most of its precedents in many aspects. The
work of Alves ef al. [2010] is similar to ours; however, they
fixed percentiles that only sometimes work for all metrics,
and the validity of their technique is done merely by visual in-
spection of plots instead of rigorous statistical tests. The CK
metrics are the most reported in these studies. Most methods
are not reproducible, and they have used only a few datasets
to validate their thresholds. The method we applied to derive
the thresholds in our previous work [Fil6 et al.,2015] is based
on the method proposed by [Ferreira et al., 2012]. However,
we applied a rigorous statistical approach and based the de-
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rived thresholds on analyzing a more extensive and diverse
dataset, 111. We also used 18 metrics and derived thresholds
for all of them.

Comparing the recent studies with our present work, we
found that some are similar to our first approach Fil6 et al.
[2015] in certain aspects, while others are not. Furthermore,
similar to our recent and previous work, most works pre-
sented in this paper took the work of Ferreira et al. [2012] as a
baseline method. Ferreira et al. [2012] applied their method
to 40 software systems and defined thresholds for six soft-
ware metrics. Aniche et al. [2016] proposed SATT (Software
Architecture Tailored Thresholds), an approach that detects
whether an architectural role is considerably different from
others in the system regarding code metrics. They concluded
that their approach tends to return doubtful results for archi-
tectural roles with metric value distributions significantly dif-
ferent when compared with other classes. Stojkovski [2017]
proposed thresholds for software quality metrics in open-
source Android projects. However, he derived thresholds for
only five metrics, four of which are from the CK suite, and
he still needs to validate thresholds on quality attributes.

Mohammed et al. [2019] compared their method for ex-
tracting thresholds with the one used by Ferreira ez al. [2012]
and concluded that they are close in the range for each cat-
egory. Compared with our present work, even though they
developed a web application to extract the threshold easily,
there is no guarantee that it does not have errors. They con-
sidered only the class level of the 16 open-source Java-based
projects. Besides that, they claim that they performed statis-
tical and comparative analyses to evaluate and validate the
effectiveness of the derived thresholds, but they used only
three metrics. Another example is the work of Berani¢ and
Heri¢ko [2019], who adopted the technique described by Fer-
reira ef al. [2012] in their study. They presented the results of
an empirical study comparing systematically obtained thresh-
old values for nine software metrics in four OO program-
ming languages: Java, C++, C#, and Python. The authors
claim that the definitions of software metrics present a limi-
tation within the research and that they need to validate the
software metrics in their study. Hussain e al. [2016] fol-
lowed the [Bender, 1999] approach and proposed a model
to derive the threshold values to 13 metrics. Still, they stated
that their proposed model only applies to derive significant
metrics thresholds for some studied systems. Lavazza and
Morasca [2016], Morasca and Lavazza [2016], and Morasca
and Lavazza [2017] proposed and evaluated metric thresh-
olds based on fault-proneness, whereas Fil6 e al. [2015] and
Ferreira et al. [2012] methods are based in benchmark data,
s0, ours. Lavazza and Morasca [2016] investigated the conse-
quences of defining thresholds on internal measures without
considering the external measures that quantify qualities of
practical interest. They found a set of statistically significant
fault-proneness models for measured 11 metrics but did not
report them explicitly in their study. Malhotra and Bansal
[2017], in their work, confirmed the derivation and valida-
tion of thresholds on only five versions of the Android oper-
ating system. The validity of Mohovi¢ et al. [2018] research
is vital because they used a robust standard sampling and sta-
tistical analysis approach. Still, their conclusions are based
on a small-scale case study, limiting their external validity.
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Mishra Alok et al. [2021] concluded in their Systematic Map-
ping Study that, even nowadays, many studies still need to
validate metric threshold values regarding quality attributes.
Still, there is a need to study a more extensive number of
metrics and their thresholds.

Even though previous studies propose different techniques
to derive thresholds for software metrics, most cover only a
few metrics, except [Arar and Ayan, 2016] and [Mei et al.,
2023]. Nevertheless, in Arar and Ayan [2016], only seven
metrics gave satisfactory results in their first case study and
eleven in the second case study. In the end, they have 18
threshold values like us. Besides that, they defined thresholds
only for modules and used only ten datasets as training data
for the model. We used a larger sample with software sys-
tems from different companies and institutions. Instead, our
approach considered methods, classes, packages, a dataset
of 111 systems, and 18 metrics and evaluated all the metrics
thresholds. Mei et al. [2023] obtained their metrics by the
Perl script; however, given that some OO cohesion metrics
are not defined in the absence of methods in a class, infor-
mation was lost, so the authors excluded classes in which the
OO metric contains undefined values. Besides that, they also
have problems on the prediction performance results on the
test datasets.

Highlighting existing methods and tools to derive thresh-
olds, Mori [2018] proposed a method to derive domain-
sensitive thresholds that respect metric statistics based on
benchmarks of systems from the same domain with the sup-
port of a software tool. Nevertheless, he does not consider
the intrinsic characteristics of software systems in each do-
main or provide an analysis of thresholds for software do-
mains. They ignore, for instance, that systems from different
environments may have various degrees of complexity and
size. Besides, they restricted his research results due to the
fewer metrics selected, only eight. Even though they have
presented a large-size study, it is necessary to do additional
replications to see if researchers can generalize their findings
to other domains and datasets. Another example is the work
of Vale et al. [2019], who proposed a benchmark-based ap-
proach, Vale’s method, for deriving thresholds for eight met-
rics with the help of a TDTtool [Veado et al., 2016]. However,
they evaluated their method using a 103 Java open-source
software system benchmark.

In our preliminary work [Fil6 et al., 2015], we do not pro-
pose a new method to derive the thresholds. Instead, we im-
proved the empirical method defined by Ferreira et al. [2012],
as in most of the works shown in this paper. Unlike the other
works, we assessed the thresholds in a proprietary software
system, evaluating the outside of the open-source universe.

In the present work, described in this article, when we com-
pare the contributions of our whole study with the results
of Ferreira et al. [2012] and all other studies, we may spot
more than four significant differences. (1) We evaluated the
18 object-oriented software metrics threshold, a large num-
ber of thresholds compared with previous and recent studies.
(2) The proposed thresholds provide a benchmark for quan-
titatively evaluating the software systems’ internal quality,
considering metrics at the class, method, and package levels,
while most of the related works described in this paper con-
sidered only the class level on the open-source Java-based
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projects. (3) To evaluate the thresholds for object-oriented
package metrics, we experimented to verify these values’
ability to assess the quality improvement of actual software
restructuring processes. (4) We provide a qualitative discus-
sion about the proposed thresholds, presenting two case stud-
ies to assess the thresholds’ ability to evaluate the internal
quality of classes and methods.

Tables 1 and 2, appearing on the next page, summarize
some works, according to the categories exhibited in Section
2.2, highlighting the statistical categories.

3 Data Collection

The software metric thresholds proposed in our research are
based on the metrics values found in real data. While defining
the thresholds, we considered each software metric’s statisti-
cal distribution characteristics. This section describes Quali-
tas.class Corpus [E. Tempero and Noble, 2010], the set of sys-
tems used, the data preparation, and the statistical data gener-
ation of the metrics necessary for this research. Qualitas.class
Corpus provides compiled Eclipse Java projects for the 111
systems included in Qualitas Corpus [Terra et al., 2013], and
the aim of Qualitas.class Corpus is to assist researchers by
removing the compilation effort when conducting empirical
studies. It contains over 18 million LOC, 200,000 compiled
classes, and 1.5 million compiled methods. Qualitas.class
Corpus relies on Metrics 1.3.8 [Metrics, 2014]. It provides
XML files with values for the 18 metrics, distributed as fol-
lows. (1) Basic metrics - Number of Classes (NOC), Num-
ber of Methods (NOM), Number of Fields (NOF), Num-
ber of Overridden Methods (NORM), Number of Parame-
ters (PAR), Number of Static Methods (NSM), and Number
of Static Fields (NSF). (2) Complexity metrics - Method
Lines of Code (MLOC), Specialization Index (SIX), Nor-
malized Distance (RMD), McCabe Cyclomatic Complexity
(VG), and Nested Block Depth (NBD). (3) CK metrics -
Weighted Methods per Class (WMC), Depth of Inheritance
Tree (DIT), Number of Children (NSC), and Lack of Cohe-
sion in Methods (LCOM). And (4) Coupling metrics - Af-
ferent/Efferent Coupling (AC/EC).

We developed a tool, RafTool [Filo et al., 2014], using
JAXB! to read the available XML files at Qualitas.class Cor-
pus. JAXB provides an easy way to read XML documents,
doing the unmarshall process to convert the XML document
to a tree of Java objects. RafTool then generates text files
containing all the measurements for each metric and popu-
lates a MySql database with all the measures and identifica-
tions of the following artifacts: method, class, or package.
We used R? to generate the cumulative relative frequency
graph, which summarizes the frequency below a given level
and generates the histogram in the logarithmic. To aid re-
searchers with software metrics works, we generated a sta-
tistical dataset of object-oriented software metrics Filo et al.
[2014], which also provides a MySQL database dump that
establishes the measures for the metrics and facilitates the
task of data manipulation, such as filtering and aggregation.

Uhttp://docs.oracle.com/javase/tutorial/jaxb
Zhttps://www.r-project.org/
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Table 1. Related Work - some basic information, software metrics, and corresponding thresholds (Adapted from Berani¢ and Hericko [2017])

Number of
Purpose Threshold software
Papers Prog. of metric calculation Metrics Threshold projects
Language | derivation method used as
benchmark
Fault Cognitive CK metrics,
Benlarbi et al.[2000] | C++ prediction theory without LCOM Yes (numeric) 2
Measurement | Distribution- Yes (risk
Alves et al.[2010] Java, C# data concern- based LOC, MCCabe, intervals low,
ing statistical statistical NOM, FAN-IN,NPM moderate, 100
prop. metrics methods high, very high
Statistical 1 Eclipse
Shatnawi [2010] Java Error risk logistic CK metrics Yes (numeric) Proj. V.2.0
level regression e V2.1
TCC, LCC, CC, DCi,
AlDallal [2011] Java Predicting Logistic SCOM, CAMC, DCd, Yes (interval
faulty classes regression LCOM1, LCOM2, min, mean, 4
data LCOMS, NHD, Coh med, max)
Java clas. NFC, NORM 4 studies
Herbold et al.[2011] C++, C# Evaluate Driven VG, WMC, CBO, Yes (numeric) on open
methods, quality machine NOM, NST, LOC, source soft.
C func. attribute learning NBD, RFC, NSM metric sets
Detecting Statistical anal- | LCOM, DIT, COF, Yes ( bad,
Ferreira et al.[2012] Java design flaws ysis of data AC, NPM, NPF regular, good) 40
Quality Benchmarking CBO, RFC, WMC,
Lochmann [2012] Java assessment approach LCOM, DIT, NOC Yes (numeric) 2041
Fault- NOC, WMC, NOM, 5
Shatnawi et al.[2013] | Java proneness Power law CBO, NOV, RFC, Yes (numeric) open-source
models distribution SLOC systems
Internal Analysis of a NOM, LOC, NOA,
Oliveira et al[2014a] | Java quality software corpus | LCOM, FAN-OUT Yes (numeric) 106
Risk analysis CK metrics, NOA, Yes 3 versions
Sing et al.[2014] C++ Bad smell logistic NOOM, NOAM, (low, medium Mozilla
regression EncF, Puf, Co, high) Firefox
Detect code categorization
Abilio et al.[2015] AHEAD smells in Soft. | and detection NOF, NCR, NMR, Yes
Product of smells in TNCt, TNR, TNMR, (low, average, 8 AHEAD
Lines (SPL) AHEAD-based | TNRC, TNRM high) systems
Reduce Yes (minimum
Shatnawi [2015] Java data Log CK metrics maximum 11 products
skewness transformation median, mean) 41 releases
Cumulative Graphical AC, CE, MLOC, NOF | Yes (interval
Fil6 et al.[2015] Java relative analysis of NOM, NSM, VG, SIX | bad-uncommon 111
frequency software metric | WMC, LCOM, NOC, regular/casual software
graph distribution DIT, PAR, RMD, NBD | good/common) systems
WMC, CBO, RFC,
Arar et al.[2016] Java Fault Statistical LCOM, LOC, NPM, Yes
prediction logistic AMC, MAX CC, (Interval min, 10
regression AVG CC, CA, CE max, standard)
Yes (interval
Distribution- WMC, DIT, CBO, tref: refer to Datasets
Lavazza et al.[2016] Java Fault prone based methods CAM, AMC, LOC, Fault-proneness | from
RFC, CA, CE, value, tmin 16% | PROMISE
maxCC, avgCC tmax 84%) repository
Visual analysis 2 Source
Stojkovski [2017] Java Internal of frequency NOM, RFC, CBO, Yes (numeric) Forge and
quality chart, tables NOC, DIT Android
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Table 2. Related Work - some basic information, software metrics, and corresponding thresholds (Adapted from Berani¢ and Hericko [2017])

Number of
Purpose Threshold software
Papers Prog. of metric calculation Metrics Threshold projects
Language | derivation method used as
benchmark
Receiver CK metrics: LOC, 5 releases

Malhotra et al.[2017] Java Change-prone | operating NOM, NIM, NIV, Yes (Numeric) of open

classes characteristic NIV, NOA, NPM, source from
curves NPROM, NPRM ANDROID
Assess the Yes (Interval 3,107 soft.

Mori [2018] Java quality of Benchmarking | LOC, NOA, NOM, very low, syst. from
software approach WMC, LCOM, CBO, | low moderate 15 desktop
syst. from DIT, NOC high, very high) | domains

Binary 5 releases
univariate of 2 open-

Mohovic et al.[2018] Java Code logistic CK metrics Yes source
fault prone regression (numeric) dataset of

model Eclipse proj.
Machine Yes

Mohammed et al.[2019] | Java Internal learning LCOM, CBO (standard, 16 open-

quality based CFC, LOC deviation, source
framework mean) projects
Bad smells Evaluate the Yes

Bigonha et al.[2019] Java detection, usefulness DIT,NOF,NSF,SIX, (interval 12 systems

and of the Filo 18 NOM, NORM, NSC, | bad, regular,
Fault-prone thresholds NSM, LCOM, WMC | good)

36 defect-
Investigate Predictive prediction

Sutan et al.[2019] Java the relation- small models | CBO, WMC, Yes (numeric) dataset of
ship between to estimate DCC, NOM, dif. version
system size threshold Export coupling, of 13 open
& threshold based sys. size | Import coupling source syst.
To compose Yes

Vale et al.[2019] AHEAD detection CK metrics, (very low, 103 open
strategies for Benchmark- CK metrics, low, moderate, source soft.
2 code smells | based method | LOC, NCR high, very high) | system

LCOMI1 - LCOM4,
Co, NewCo,
NewLCOMS5, LCC,
ICH, OCC, PCC,
DCd, DCi, CAMC,
NHD, SNHD,
ACAIC, ACMIC,
AMMIC, DMMEC,

Mei et al.[2023] Java Defect- Statistical OCAEC, OCAIC, Yes 65
proneness meta OCMEC, OCMIC, (numeric) project
analysis analysis OMMEC, CBI, CBO
of classes technique DAC, ICP, MPC,

THICP, NIHICP,
RFC, AID, CLD,

DIT, DP, DPA, DPD
NMA, NMI, NMO,
NOA, NOC, NOD,
NOP, SIX, SP,

SPA, SPD, NA
NMIMP, SLOC
NumPara, Stmts
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Table 3. Catalog of Thresholds (extracted from Fil6 et al. [2015])
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’Metrics\ Good/Common Regular/Casual Bad/Uncommon
AC m<7 7T<m<39 m > 39
EC m<6 6<m< 16 m > 16
DIT m <2 2<m<4 m >4
LCOM m < 0.167 0.167 <m < 0.725 m > 0.725
MLOC m < 10 10<m <30 m > 30
NBD m<1 l<m<3 m >3
NOC m <11 11 <m <28 m > 28
NOF m<3 3<m<8 m > 8
NOM m<6 6<m<14 m > 14
NORM m <2 2<m<4 m >4
NSC m<1 l<m<3 m >3
NSF m<1 l<m<5H m>5
NSM m<1 1l<m<3 m >3
PAR m <2 2<m<4 m >4
RMD m < 0.467 0.467 < m < 0.750 m > 0.750
SIX m < 0.019 0.019 <m < 1.333 m > 1.333
VG m < 2 2<m<H4 m >4
WMC m <11 11<m< 34 m > 34

4 Thresholds Identification

For completeness, this section briefly describes how we iden-
tified the software metrics thresholds and made their first
evaluation in the previous work, Filo et al. [2015].

In the Ferreira et al. [2012] work (Section 2), when a met-
ric has a distribution with an expected average value, as the
Poisson distribution, this value is taken as typical for that
metric; otherwise, they identified three ranges for the metric
values: Good, Regular, and Bad. The authors used the graph-
ical analysis of software metric distributions to derive the
thresholds. We proposed two improvements to this method
in Filé et al. [2015], (1) we modified the ranges names
to Good/Common, Regular/Casual, and Bad/Uncommon to
highlight the importance of the frequency concept in the sug-
gested thresholds. (2) We established two percentiles rather
than the values based on a visual analysis of the graphi-
cal views and the threshold’s frequency concept. These per-
centiles separate the metric values on the three ranges of val-
ues mentioned. We found that using predefined percentiles
improves the method since it allows obtaining the values di-
rectly from the data set, making the method application more
reproducible. To illustrate that, we provided illustrative ex-
amples of the application of our approach for two metrics:
Number of Methods (NOM) and Depth of Inheritance Tree
(DIT).

4.1 The Proposed Catalog of Thresholds

Besides our improvements in the Ferreira ef al. [2012] work,
our previous work proposed a catalog with thresholds for 18
software metrics and briefly described the method used to
derive them. Table 3 exhibits the thresholds catalog for each
metric analyzed in this study. Our catalog reflects a pattern
followed by most of the software systems in Qualitas.class
Corpus, which may be helpful in some scenarios of Software
Engineering.

This paper details each metric and its thresholds in Ap-
pendix A.

4.2 Case Study of Proprietary Software with
Bad Internal Quality

To evaluate our catalog, in that work, we handled a case
study to assess proprietary software from a public organiza-
tion with a bad internal quality to verify the proposed thresh-
olds’ ability to indicate it. We divided this study into three
items to assess the metrics of class and methods and the cor-
relation of bad smell occurrence with our threshold evalu-
ation. In such analysis, we identified fewer methods eval-
uated as Good/Common and a high number estimated as
Bad/Uncommon compared with most of the systems in the
Qualitas.class Corpus. This result agrees with the established
qualitative design about the low quality of this system, and
the thresholds for method metrics reflected, quantitatively,
the scenario of the low quality of this system. Regarding the
class evaluation, we considered a set of eight poor-quality
classes. They all had at least three classifications out of range
Good/Common. Based on this evaluation, we concluded that
we should not use a single metric of our catalog to define
class quality. This conclusion is consistent with the work of
Rosenberg et al. [1999]. Therefore, the results of our previ-
ous work suggest that our catalog is an efficient way to evalu-
ate the methods and classes effectively. It will not show qual-
ity where there are problems. More essentially, it suggests
the utility of the proposed thresholds outside the open-source
universe [Fil6 et al., 2015].

S New Threshold Derivation Example
Section 5 shows our method applied to the McCabe Com-

plexity (VG) metric, illustrating a new example of threshold
derivation and discussing its main aspects. Figure 1 shows in
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a the Cumulative Relative Frequency Graph and in b the pdf
fitted to the Chi-Squared. Figure 1 a suggests a heavy-tail
distribution for the VG metric because the approximation of
100% o cumulative relative frequency along the x-axis, met-
ric values, occurs in a drastically faster way, i.e., there is a
nearly instantaneous approximation of 100% of the measures.
This fact means that there are many methods with few inde-
pendent paths in their execution graph and a few methods
with a large number of independent paths in their execution
graph.

Figure 1 b shows that the data set of VG is best-fitted by
Chi-Squared distribution, with parameters v = 1.000 and
~ = 1.000. This distribution has heavy-tail characteristics.
If this is the case, we may not use the sample mean and vari-
ance as estimators of the population because basing any con-
clusion on sample means without fully understanding the dis-
tribution would be misleading. According to [Baxter ef al.,
2006] the mean value is not representative.

Figure 2 exhibits the data set on a log-log scale. This graph
shows a straight leaning to the left, a power-law feature [Fer-
reira et al., 2012; Baxter et al., 2006]. This pattern enhances
the features already mentioned; most classes have few meth-
ods, and the mean is not representative. We chose the 70°
and 90° percentiles by a visual analysis of the Cumulative
Relative Frequency Graph shown in Figure 1 a. The points
marked with green/square shape and red/diamond shape rep-
resent the regions identified in this analysis. Furthermore, the
choice of these percentiles is also based on the concepts of
Good/Common, Regular/Casual and Bad/Uncommon ranges
since our thresholds reflect the standard that has commonly
applied in software development. Thus: (1) based on visual
analysis, (2) on the established concept for the ranges, and
(3) inspired by Alves et al. [2010] —who used percentiles to
statistically part quality metric profiles in the identification
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Figure 2. Histogram log-log scale.

of thresholds— we tried to apply 70° and 90° percentiles in
most of the metrics to identify the measures to separate the
three suggested ranges, which correspond to the values 2 and
4.

We observed variations that follow the distribution curve
features when they are taller or flattened or depending on a
higher or lower metric value (z- axis) to reach a higher cumu-
lative frequency, in which the 70° and 90° percentiles do not
have significance. In such cases, we relied mainly on the vi-
sual analysis and distribution features to identify the regions
that may separate the three suggested ranges. The value two
is at the 70° percentile. So, two is equal to or greater than
70% of the measures in the dataset. The value four is at the
90° percentile. Then, four is equal to or greater than 90%
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of the values. Therefore, 2 and 4 allow us to separate the
VG metric in: Good/Common (VG < 2), Regular/Casual
(2 < VG < 4), and Bad/Uncommon (VG > 4).

6 Discussion About the Technique
Used to Derive the Thresholds

The proposed thresholds allow identifying methods, classes,
and packages with anomalous measures compared to the
quality pattern commonly applied in software development.
Identifying anomalous measurements may aid software qual-
ity assessment, even though they do not necessarily mean a
problem, but it suggests that there might be a problem with
the artifact’s structure. This section discusses the main as-
pects of deriving the thresholds in this research.

6.1 Treatment of Metric Values

Bouwers and Van [2012] say that conducting software
changes to improve metric values is a purely “cosmetic” ac-
tivity. Value handling leads to refactorings that “please the
metrics”, which severely wastes resources. To illustrate this
situation, they consider a project in which a method is iden-
tified as having too many parameters; this may indicate that
the method is implementing several features. If this method
is split into smaller ones so that each resulting method imple-
ments a single functionality, it will make the program easier
to understand. A second problem that may be occurring with
this method is the need for an object that groups parameters
commonly used together. For instance, consider a method
that receives as a parameter two objects of type Date, start-
Date and endDate. These names suggest that these two pa-
rameters may form an object of type DatePeriod, in which
startDate must precede endDate. When multiple methods re-
ceive them as input, the introduction of the object DatePe-
riod into the domain may be of great value to the quality of
the project.

These two situations exemplify that quantitative evalua-
tion may imply a real improvement in the project, making
it more readable and easier to maintain. It reaches the orga-
nization’s goal of having higher-quality software. However,
the programmer may directly treat the value of a metric. For
instance, he may move the method parameters to class at-
tributes or even replace them with an object of type Map,
which is a list of elements of type key-value, where key rep-
resents the parameter with its value, and value represents its
value.

All those strategies may reduce the number of parameters
of the methods. However, the ultimate goal is to improve
code readability and minimize future maintenance efforts. In
this case, solutions that address symptom management rather
than the root causes of the problem will not effectively en-
hance the quality of the software. This situation appears be-
cause the developers may need to learn that there are more
important goals when applying the metrics to manage the in-
ternal software quality.

Looking at the practical application of the proposed thresh-
old catalog, it is not intended that tools that use them give
developers results in absolute numbers. It is essential that
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the programmer adequately interprets the method, class, or
package as having structural problems according to a given
quality attribute mapped by the metric. Moreover, the pro-
grammer must know the quality goal sought by that control
[Bouwers and Van, 2012]. Using an ordinal variable that re-
flects the qualitative classification allows the programmer to
be guided not by a value but by seeking quality. The value
should not be the ultimate goal; it should be a way to reach
the ultimate goal, which is to increase the software quality.

6.2 Unidirectionality of the Proposed Thresh-
olds in Relation Quality

The approach of this work is unidirectional concerning the
quality since it assumes a clear quality orientation for lower
metric values. This presumption exists. However, observe
that this problem starts with the metrics definition itself. All
the metrics, even those with no thresholds, have a more pre-
cise definition regarding deteriorated quality for high val-
ues than for low ones. A classic example of this ”pattern”
adopted is where the higher the metric value, the worse it
is, as in the metric LCOM. A class must have high cohe-
sion. However, to maintain this sense of orientation that high
values are not good, the metric is defined as a lack of cohe-
sion [Chidamber and Kemerer, 1994]. The questions in the
sequel are, in fact, much more problematic in both defini-
tions -metrics and thresholds- What is the minimum coupling
value a package should have? What is the minimum number
of attributes a class should have? Moreover, What is the min-
imum number of class methods?

As such, Good/Common range reflects what is consen-
sual in quality because it represents the practice in software
development. Of course, there are problems related to this
definition, but they are much more related to how to ap-
ply the threshold catalog than their values. An example of
this scenario is the DIT metric, which has a clear orienta-
tion that high values characterize a deep inheritance hierar-
chy, meaning that methods will be inherited and the class
will become more complex. In addition, large distances be-
tween child classes and the root class in the inheritance hi-
erarchy characterize a more complicated project and, there-
fore, prone to errors. This orientation is evident because in-
heritance trees should not be deep. In the metric definition,
Chidamber and Kemerer [1994] suggest that many classes
with very small DIT look like a ’top-heavy” project, indicat-
ing that the project may not be taking advantage of reusing
methods via inheritance. However, the authors of the DIT
metric say that this may occur in function of the application
and, itself, is a conclusion that transcends the metrics’ respon-
sibility in evaluating the inheritance tree depth of the class
and, consequently, the threshold proposed for it.

In this scenario, if all system classes have DIT = 0, they
would be classified as Good/Common. However, the project
would be “top-heavy,” suggesting a sub-optimal use of in-
heritance. This assumption is probably correct, but it contra-
dicts what is proposed as a threshold for DIT, as shown by
the good results in this example. This conclusion emerges
from a general observation of the software design and has no
relation to the Filo et al. threshold having classified classes
as Good/Common. A class with a shallow inheritance tree
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(DIT = 0) does not display the problems listed by DIT au-
thors when defining this metric. One might think that the is-
sue of all classes being well evaluated is related to the thresh-
old definition. After all, the project does not use inheritance
properly. This fact would be a problem in understanding the
metrics definition and the application of this catalog; this
happens because none of the metrics for which we proposed
the threshold evaluate the use of the corresponding resource
within the software. These considerations highlight issues re-
lated to using the thresholds catalog and interpreting their
results. The scenarios to which they should be applied must
be evaluated by the user to minimize misinterpretation.

6.3 Sensitivity Analysis of the Proposed
Method to Derive Thresholds to the
Corpus Choice

Ferreira et al. [2012] conducted the sensitivity evaluation of
the method used to derive the thresholds regarding the Qual-
itas Corpus [E. Tempero and Noble, 2010] with a high level
of sensitivity in the method definition itself. They applied the
method across the systems and grouped it by application, do-
main, and type. In doing so, they do not identify relevant dif-
ferences between these approaches’ thresholds. Instead, con-
sidering this research’s primary goal, evaluating the thresh-
olds catalog for object-oriented software metrics, we applied
our method to the whole dataset considered in this work.

6.4 Implementation of the Metrics

The metrics analyzed in this research were collected using
the Metrics plugin. Differences in the implementation of soft-
ware metrics due to different interpretations between the ex-
traction tools are common due to the need for specific defini-
tions. Implementation details are present on the plugin Met-

rics?.

7 Thresholds Evaluation in Real Re-
structuring Processes

This experiment aims to investigate RQ1: Does refactor-
ing improves the metric thresholds?. To Anquetil and Laval
[2011], identified thresholds should detect improvements in
a software quality system. Therefore, we evaluate if we may
use Fild’s et al. metrics thresholds at the package level as soft-
ware quality indicators in actual object-oriented restructuring
processes, i.e., if the metrics concerning a package change
its range in Fil6’s et al. metrics thresholds when a refactor-
ing is performed in the package. We analyzed the following
software metrics: NOC (number of children, AC (afferent
coupling), EC (efferent coupling), and RMD (normalized dis-
tance). We considered these metrics because they may be im-
pacted when changes of classes within the packages occur,
e.g., including/excluding classes in/from a package.

3http://metrics2.sourceforge.net/
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7.1 Study Design

In this section, we describe the method we applied to the ex-
periment. First, we justify the criterion when selecting the
project subjects for analysis (Section 7.1.1).

7.1.1 Projets Selection

The context of this experiment is restructured object-oriented
software packages; therefore, we defined two ideal situations
regarding the samples.

* The restructuring process must be a genuine effort and
of limited duration [Anquetil and Laval, 2011]. This
allows for identifying versions before and after the re-
structuring once they do not get lost in other natural
changes during software evolution. However, this is
hard to find because real systems need to evolve.

* We derived the identified thresholds from measure-
ments gathered with the Metrics plugin. This fact im-
poses one restriction: projects must be able to be com-
piled in Eclipse so that the values collected for the exper-
iment on the target systems were collected in the same
way that the values used to define the metrics were col-
lected.

This experiment used JHotDraw and Eclipse software
systems that meet these requirements. Instances of restruc-
turing processes in them appear in Section 7.1.3.

7.1.2 Data Analysis Process

For a pair of subsequent versions, vl and v2, of the sys-
tem, we computed the following data: base version packages
(number of packages of v1), removed packages, added pack-
ages, and restructured packages. We also collected NOC, AC,
EC, and RMD metrics in vl and v2. Then, we identified the
threshold in which these metrics of the package fall and com-
puted the percentage of packages whose metric values fall in
each range of the corresponding thresholds.

With those data, we analyzed whether there is a relation-
ship between the restructuring and the increase in quality in-
dicated by the threshold. We consider this relationship ex-
ists when the percentage of packages with the metric in
the Bad/Uncommon range in v2 is lower than the percent-
age of Regular/Casual and Good/Common in vl1, as well as
the percentage of the packages with the metric in the Regu-
lar/Casual range in v2 is lower than Good/ Common range
invl.

The percentage was used because, in absolute terms, the
number of packages in the Bad/Uncommon range may in-
crease in the restructured version. However, in relative terms,
it is expected to decrease. For example, a package clas-
sified as Bad/Uncommon may be divided into ten pack-
ages, where two are Bad/Uncommon, and the rest are in the
Good/Common. In this case, there is an absolute increase of
Bad/Uncommon packages in the restructured version; how-
ever, there is a considerable relative decrease, from 100% to
20%. As it seeks to evaluate pure restructuring efforts, i.e.,
those in which there is no implementation of new functional-
ities or improvements, in this situation, in global terms, the
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restructuring increased the quality of the software packages.
The threshold identified can indicate this. Therefore, it is not
assumed that the restructuring will necessarily result only in
packages classified as Good/Common or Regular/Casual, but
it is expected that the overall quality of the restructured por-
tion of the system will increase and that the thresholds will
measure this increase.

7.1.3 Types of Restructuring Processes

A restructuring process occurs when a change is performed in
the system to improve its internal quality. In this experiment,
we considered global and local restructuring. A global re-
structuring affects the entire system and, therefore, must im-
prove the whole system’s quality [Anquetil and Laval, 2011].
In this case, the analysis considered all the system packages.
A local restructuring may only consider some of the system’s
packages; after all, despite the increased package quality re-
lated to the restructuring, the system’s quality may deterio-
rate due to other modifications. In this case, we considered
only the packages associated with the context of the restruc-
turing in the base and restructured versions, i.e., only the re-
structured part of the system. Local restructuring involves the
possibilities related to packages as follows.

* New. When a new package appears on the restructured
version but contains classes at some base version, we
considered part of the context’s restructuring in the
new package along with all regrouped classes from the
source packages.

* Moved Class. When a class moves from an existing
package to another, we consider that both packages’
quality improved [Anquetil and Laval, 2011]. Hence,
we may say that moving the classes among packages
corresponds to a restructuring process, and when this
happens, we expect the class to move to a more suitable
package. Also, we assume the class is best placed af-
ter the restructuring, so the package where the class has
moved improves its quality. But, note that a restructur-
ing process does not necessarily result in packages with
the best possible grouping of classes, but only that class
improved the quality of the package.

7.1.4 Operation

After defining the scope and planning the experiment, it is
necessary to prepare the system for it. We downloaded the
projects considered in this experiment and imported them to
Eclipse, previously installed with the Metrics plugin [Met-
rics, 2014]. For the experiment, we run the Metrics plugin
to collect the metrics from the projects. Then, we imported
these data to a Mysq! database to facilitate their analysis and
validation.

7.2 Target Systems

This section describes the instances of restructuring identi-
fied in the target systems, JHotDraw and Eclipse.
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7.2.1 JHotDraw

JHotDraw* is a framework developed in Java for technical
and graphic design. The Anquetil and Laval [2011] work
identified JHotDraw versions restructured, identifying three
version changes with local restructuring, thorough documen-
tation of the versions, and analysis of the project’s source
code. Such instances of restructuring are the objects of this
experiment. They are:

1. The following packages, org.JHotDraw.draw and
org.JHotDraw.app.action, Version 7.4.1, had part of
their classes regrouped in 11 and five sub-packages, re-
spectively. In this research, we considered that the re-
structured and the added packages resulting from the
restructuring are part of our local restructuring.

2. Package org.JHotDraw.gui.plaf.palette, version
7.5.1, had some of its classes regrouped in a new
subpackage; and classes of org.JHotDraw.gui.event
package moved to org.JHotDraw.draw.event pack-
age.

3. Package org.JHotDraw.gui.plaf.palette, Version 7.6,
had some classes regrouped in a new subpackage, and
classes of org.JHotDraw.gui.event package moved to
org.JHotDraw.draw.event package.

Table 4 summarizes, quantitatively, the identified local re-
structuring instances. The Total Restructured Packages line
in this table includes the amount of restructured packages
in the base version plus the added packages in the restruc-
tured version. So, suppose two packages were restructured
in the base version, and the restructuring process added 16
packages. In that case, the total restructured packages are
18, just like the restructuring identified in column JHotDraw
7.3.1/7.4.1.

7.2.2 Eclipse

Eclipse® is one of the most popular IDE for Java develop-
ment and other programming languages. To Anquetil and
Laval [2011] and the Eclipse documentation, ® the IDE was
restructured from Version 2.1.3 to 3.0, evolving Eclipse from
the concept of an extensible /DE to an Rich Client Platform.
Anquetil N. et al. considered Eclipse restructuring globally
because it impacted many packages.

7.3 Experiment Results

This experiment does package restructuring and shows the re-
sult for package metrics assessed: NOC, AC, EC, and RMD.

7.3.1 JHotDraw

Considering the metric NOC, Table 5 shows that from
version 7.3.1 to 7.4.1, the percentage of packages in the
Bad/Uncommon range decreased from 100% to 11%. From
version 7.4.1 to 7.5.1, we observed that the percentage of

*http://www.JHotDraw.org/

Shttp://www.eclipse.org

http://www.eclipsecon.org/2004/EclipseCon_ 2004 __
TechnicalTrackPresentations/11__Edgar.pdf
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Table 4. Local Restructuring - JHotDraw

’ JHotDraw Versions 7.3.1/7.4.1 | Versions 7.4.1/7.5.1 | Versions 7.5.1/7.6
a) Base Version Packages 46 62 65
b) Removed Packages 2 0 1
c¢) Added Packages 16 3 1
d) Restructured Packages 2 3 1
e) (e=ctd) Total Restructured Packages 18 6 2
f) (f=a-b+c)Restructured Version Packages 60 65 65

Table 5. Results of JHotDraw -Restructuring- NOC, AC, EC, and RMD

| Metrics | Versions Packages | Bad/Uncommon | Regular/Casual | Good/Common |
NOC From 7.3.1 2 2 (100%) - -
to 7.4.1 18 2 (11%) 4 (22%) 12 (67%)
From 7.4.1 3 1 (33%) 2 (67%) i
t07.5.1 4 1 (25%) 1 (25%) 2 (50%)
From 7.5.1 1 1 (100%) ) )
t07.6 2 1(50%) ; 1 (50%)
AC From 7.3.1 2 2 (100%) - -
t07.4.1 18 5 (28%) 8 (44%) 5 (28%)
From 7.4.1 3 1 (33%) 2 (67%) -
t07.5.1 4 1 (25%) 1 (25%) 2 (50%)
From 7.5.1 1 1 (100%) - ]
to 7.6 2 1 (50%) - 1 (50%)
EC From 73.1 2 2 (100%) - -
to 7.4.1 18 4(22%) 7 (39%) 7 (39%)
From 7.4.1 3 1 (33%) 2 (67%) ;
t07.5.1 4 1 (25%) 2 (50%) 1 (25%)
From 7.5.1 1 ) 1 (100%) ;
t07.6 2 - 1 (50%) 1 (50%)
RMD From 7.3.1 2 - - 2 (100%)
t07.4.1 18 1 (5.55%) 9 (50%) 8 (44.45%)
From 7.4.1 3 - 3 (100%) -
t07.5.1 4 - 2 (50%) 2 (50%)
From 7.5.1 1 . 1 (100%) ]
t07.6 2 ; 2 (100%) ;

packages in the Bad/Uncommon range also decreased from
33% to 25%, and from version 7.5.1 to 7.6, the percentage of
packages in the Bad/Uncommon range decreased from 100%
to 50%.

For AC metric, the percentage of packages from versions
7.3.1 to 7.4.1 and versions 7.4.1 to 7.5.1 decreased. The per-
centage of packages Regular/Casual also decreased in ver-
sions 7.4.1 to 7.5.1, from 67% to 25%. For versions 7.5.1
to 7.6, Version 7.5.1, in the restructuring context, has one
package classified as Bad/Uncommon 100%. The restructur-
ing process resulted in two packages in Version 7.6, one
Bad/Uncommon and one Good/Common. Therefore, the per-
centage of packages in Bad/Uncommon range in the restruc-
tured version decreased from 100% to 50%.

Table 5 shows for EC metric that from versions 7.3.1
to 7.4.1, the percentage of packages in the Bad/Uncommon
range decreased from 100% to 22%. From versions 7.4.1 to
7.5.1, the percentage of packages in Bad/Uncommon also de-
creased, from 33% to 25%. The same occurred with the per-
centage of packages in the Regular/Casual range, which de-
creased from 67% to 50%. From versions 7.5.1 to 7.6, no

preexisting package went from a better range to a worse one,
and the percentage of packages in the Regular/Casual range
in the restructured version decreased from 100% to 50%.

Considering the RMD metric, we observed that from
versions 7.3.1 to 7.4.1, the percentage of packages in the
Bad/Uncommon increased from 0% to 5.55%, and the rate
of packages in Good/Common range decreased from 100%
to 44.45%. Besides that, the threshold could not identify the
lousy quality of the restructured packages because it classi-
fied the two initial packages as Good/Common. From ver-
sions 7.4.1 to 7.5.1, the percentage of packages classified
as Regular/Casual decreased from 100% to 50%. From ver-
sions 7.5.1 to 7.6, the percentage of packages classified in
Regular/Casual range was equal in the restructured version.
So, the threshold was not able to measure quality improve-
ment.

7.3.2 Eclipse

Considering Eclipse’s global restructuring, there was an in-
crease of 282 packages. Table 6 shows the absolute and rela-
tive number of packages for each package metric and thresh-
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Table 6. Global Restructuring - Eclipse

Metrics | Good/Common \ Regular/Casual \ Bad/Uncommon \
NOC | 202 (45.5%) — 330 (49.4%) | 146 (33.03%) — 217 (32.49%) | 94 (21.27%) — 121 (18.11%)
AC 191 (43.21%) — 290 (43.41%) | 141 (31.9%) — 223 (33.38%) | 110 (24.89%) — 155 (23.2%)
EC 181 (40.95%) — 301 (45.06%) | 138 (31.22%) — 206 (30.84%) | 123 (27.83%) — 161 (24.1%)
RMD | 297 (67.19%) — 450 (67.37%) | 101 (22.85%) — 155 (23.2%) | 44 (9.95%) — 63 (9.43%)

old range in the base version and the restructured one. The
results are analyzed as follows.

* Number of Classes (NOC). The percentage of pack-
ages classified in the Bad/Uncommon range decreased
from 21.27% to 18.11%. If only those 282 packages
are considered, only 24 (8.51%) were classified as
Bad/Uncommon, while 171 (60.64%) were classified as
Good/Common.

+ Afferent Coupling (AC). The percentage of packages
in the Bad/Uncommon range decreased from 24.89% to
23.2%. Considering only those 282 packages, only 26
(9.22%) would be classified as Bad/Uncommon, while
166 (58.87%) would be classified as Good/Common.

+ Efferent Coupling (EC). The percentage of packages
classified as Bad/Uncommon decreased from 27.83%
to 24.1%. This fact is significant, considering that
there was an increase of 282 packages in the restruc-
tured version, and only 35 (12.41%) were classified as
Bad/Uncommon. Also, 159 (56.38%) were classified as
Good/Common.

* Normalized Distance (RMD). The percentage of pack-
ages at the Bad/Uncommon range slightly decreased
from 9.95% to 9.43%.

7.3.3 Summary

This result indicates that the thresholds of NOC, AC, and
EC can capture possible improvements brought by the refac-
toring process. For RMD, the results do not ensure that the
threshold captures the quality increase. Moreover, no preex-
isting package went from a better range to a worse in the re-
structuring context at the base and the restructured version.

7.4 Discussion about Thresholds Evaluation
in Real Restructuring Processes

This section provides a synthesis of our experiment and a
discussion of the results.

It is essential to report that the threshold values were able
to indicate, quantitatively, a deteriorated quality in a base
software version in favor of increased quality in a restruc-
tured version, in relative terms, having been well explained
that, in absolute terms, the number of artifacts classified as
Bad could have even increased, even though that was not
the case. The restructuring effort does not necessarily guar-
antee that the software quality will increase. However, it is
expected, even given the context and wide use of the JHot-
Draw software for this type of analysis, some improvement
concerning the baseline version, which our threshold values
were able to indicate.

As we seek to evaluate pure restructuring efforts, that is,
those in which no new functionalities or improvements are
implemented, in this situation, in global terms, the restruc-
turing increased the quality of the software packages, and
the thresholds were able to indicate that.

Therefore, we did not assume that the restructuring
would necessarily result only in packages classified as
Good/Frequent or Regular/Occasional. Still, the overall qual-
ity of the restructured portion of the system is expected to
increase, and the thresholds will be able to measure this ad-
dition.

A deeper analysis in this regard would require a qualita-
tive study carried out by experts to cross the qualitative anal-
ysis with the quantitative analysis. However, as stated by An-
quetil and Laval [2011], “if we accept that the restructurings
were studied reasonably successful - which is a plausible hy-
pothesis given the continuing success of the Eclipse platform
six years later - we remain with various possible explana-
tions.”

7.4.1 Answering the Research Question RQ1

We start the discussion of the findings of the experiment at
hand by answering the proposed research question (RQ1.)
Does refactoring improves the metric thresholds?. The goal
of studying this research question is to investigate whether
the thresholds are sensitive to improvements resulting from
refactoring.

The answer to RQ1 is YES. To evaluate thresholds for
object-oriented package metrics, we experimented with local
restructuring and global restructuring in two widely known
software systems JHotDraw and Eclipse, to verify the ability
of these values to measure the quality increased on restruc-
turing processes. The results of this experiment suggest that
the proposed thresholds could detect a deteriorated quality at
the software base version in favor of increased quality at a re-
structured version. Specifically, it suggested the efficacy of
the threshold for the NOC, AC, and EC metrics and the inef-
fectiveness of the recommended threshold for the RMD. For
the RMD, in the Eclipse, the threshold could not indicate de-
teriorated quality in the scenario before refactoring, nor the
quality increasing in the restructured version. Therefore, we
may not reject the null hypothesis. Assuming that the RMD
metric is valid and appropriate for evaluating software qual-
ity from a packaging perspective, this result would suggest
that the threshold value is invalid. However, the derivation
process for identifying the threshold for RMD is the same for
the metrics NOC, AC, and EC, which had suggestive results
in defense of the thresholds. Therefore, this result doubts
the validity of this metric in evaluating the quality of object-
oriented software packages.
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8 Thresholds Catalog Evaluation by
Case Studies

Our previous work evaluated the threshold catalog through
a case study on a public organization’s proprietary software
system. According to the developers who maintain it, the
system has a deteriorated internal quality. We investigated
whether the proposed thresholds followed the developers’
evaluation, and the case study results showed our catalog’s
effectiveness in that context.

In this article, we improved the evaluation of our thresh-
olds. For this purpose, besides the assessment described in
Section 7 and the case study shown in our previous work
[Fil6 et al., 2015], we conducted two other case studies and
presented them in this section. They aim to verify whether the
derived thresholds can assess the internal quality of software
systems. We defined the research question RQ2 to show that
we achieved our purpose. Are the proposed thresholds able
to differentiate poor and good software quality?- and pro-
pose the specific ones, RQ2.1 and RQ2.2 in Section 1, which
will be answering, respectively, here.

We did Case Study 1 (Section 8.1) to answer RQ2.1 Can
the proposed thresholds detect poor-quality methods and
classes?This case inspected the methods and classes classi-
fied as Bad/Uncommon and Regular/Casual ranges. Then,
we verified whether the qualitative evaluation follows the
thresholds, i.e., if the classes with metrics in the ranges
Bad/Uncommon and Regular/Casual have design problems
indeed.

The second Case Study (Section 8.2) investigated RQ2.2
Can the proposed thresholds detect high-quality methods and
classes?Case Study 2 analyzed JHotDraw. As described in
Section 8.2, JHotDraw is considered a well-designed project.
Therefore, in this case study, we verified whether the JHot-
Draw quantitative evaluation based on our thresholds catalog
corresponds to the so-called high-quality JHotDraw.

These case studies considered all methods and classes
from the dataset used in the thresholds derivation process,
Qualitas.class Corpus [Terra et al., 2013].

8.1 Case Study 1

The purpose of Case Study 1 is to evaluate the ability of the
suggested thresholds to detect methods and classes with de-
sign problems. We used the database of measures created in
the derivation process, which stores the measurements. Us-
ing SQL, we filtered the methods and the classes whose mea-
surements fall in the Bad/Regular using SQL. We then per-
formed a manual inspection on them and compared the re-
sults of this evaluation with the quantitative assessment.

8.1.1 Inspection of the Methods

The Qualitas.class Corpus contains 1,663,526 methods,
which makes it challenging to select a viable sample to
conduct the inspection, even when using a metric compo-
sition strategy. Therefore, we applied the most restrictive
filter possible, which selected all methods evaluated in the
Bad/Uncommon range by the method metrics present in the
catalog: Lines of Code per Method (MLOC), which resulted
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in 80,061 methods; of which McCabe Complexity (VG),
which resulted in 63,030; Number of Parameters (PAR),
which resulted in 5,531; and Depth of Nested Blocks (NBD),
which resulted in 3,858. Even with the use of all defined
threshold values, it was not possible to achieve a reasonable
number of methods for manual inspection; after all, 3,858
remains a very high number, despite this quantity represent-
ing, relatively speaking, only 0.23% of the total number of
sample methods.

In summary, we used a combination of all metrics, MLOC,
VG, PAR, and NBD, in the Bad/Uncommon threshold to re-
sult in 3,858 methods. We describe the process we adopted
to make this selection in the sequel.

1. We sorted the query result by the method name, column
name. The ordering has no relation to the absolute value
of any metric used in the filter.

2. We used a random number generation algorithm to gen-
erate ten numbers between 0 and 3,858. The generated
numbers are: 92; 205; 963; 1,122; 1,376; 2,683; 2,882;
3,063; 3,417; and 3,727.

3. We also used the random numbers to select the meth-
ods for manual inspection, i.e., we considered the n-th
method of the ordered list, where n is the random value.

Through this criterion, the selected methods may be from
any of the 111 systems in the Qualitas.class Corpus. To per-
form the manual inspection, we imported into Eclipse the
systems where the selected methods belong. Table 7 shows
the chosen methods, exhibiting their name, class, and system.
Appendix B describes the manual qualitative evaluation for
each method.

8.1.2 Inspection of the Classes

This study aims to evaluate the ability of threshold values
to indicate methods and classes with deteriorated quality.
To conduct this experiment, we considered all methods and
classes of the systems dataset used in the derivation pro-
cess as targets. To do that, we used the database created in
the derivation process, which stores all the measurements.
The study consisted of inspecting the methods and classes
classified in the Poor/Regular range to compare the qualita-
tive assessment with the quantitative assessment. The Qual-
itas.class Corpus contains 247,395 classes. First, we consid-
ered all ten metrics for the class level by filtering the classes
whose metric values fit the Bad/Uncommon range. This first
filter did not return to any class. Hence, we tested a second
filter without the metric Number of Static Methods (NSM)
because we considered this metric less relevant compared
to the others. However, the filter remained very restrictive
and returned only one class. Subsequently, we excluded the
Number of Children (NOC) metric of the filter, given that it
does not directly impact the quality of the class but instead on
the risk of alteration and failure of the inheritance hierarchy
design. Given these two exclusions, we obtained 19 classes,
which we considered viable for manual inspection.

From these resulting sets, we excluded three classes. Two
are anonymous classes, defined more than once within the
classes where the resource is used. The third one is an inner
class defined inside several methods of the outer class.
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Table 7. Inspected Methods.

’ Methods \ Classes Systems
addGetterSetterChanges SelfEncapsulateFieldRefactoring eclipse-3.7.1
analyseAssignment QualifiedNameReference eclipse-3.7.1
diffList CasualDiff netbeans-7.3
drawSubCategoryLabels SubCategoryAxis jfreechart-1.0.13
findLocalMethods CompletionEngine aspectj-1.6.9
prepMinion GenericStatement derby-10.9.1.0
readAj5ClassAttributes AtAjAttributes aspectj-1.6.9
REPTree. Tree#buildTree REPTree weka-3-6-9
startFileInternal FSNamesystem hadoop-1.1.2
visitBranchInstruction CodeSubroutinelnliner proguard-4.9

Table 8. Inspected Classes.

Classes/Systems

Packages

CloneableEditor/netbeans-7.3

org.openide.text

CompilationUnitEditor/eclipse-3.7.1

org.eclipse.jdt.internal.ui.javaeditor

CtxHelpTreesubsection/eclipse-3.7.1

org.eclipse.pde.internal.ua.ui.editor.ctxhelp

DependencyManagementsubsection/eclipse-3.7.1

org.eclipse.pde.internal.ui.editor.plugin

DeploymentDisplay/megamek-0.35.18

megamek.client.ui.swing

GTKFileChooserUl/jre-1.6.0

com.sun.java.swing.plaf.gtk

InfoProduct/compiere-330

org.compiere.apps.search

JarPackageWizardPage/eclipse-3.7.1

org.eclipse.jdt.internal.ui.jarpackager

JoinNode/derby-10.9.1.0

org.apache.derby.impl.sql.compile

JRCTXVisual View/iReport-3.7.5.

com.jaspersoft.ireport.designer.jrctx

JSVGCanvas/batik-1.7

org.apache.batik.swing

JTitledPanel/netbeans-7.3.

org.netbeans.lib.profiler.ui.components

SAX2DTM2/jre-1.6.0.

com.sun.org.apache.xml.internal.dtm.ref.sax2dtm

SAX2DTM2/xalan-2.7.1.

org.apache.xml.dtm.ref.sax2dtm

SimpleCSMasterTreesubsection/eclipse-3.7.1

org.eclipse.pde.internal.ua.ui.editor.cheatsheet.simple

SVGFlowRootElementBridge/batik-1.7

org.apache.batik.bridge.svgl2

We selected the 16 classes evaluated through the combi-
nation of eight suggested threshold values, which assess dif-
ferent aspects of software quality in object-oriented software
classes. In these classes, we conducted a manual inspection
to evaluate them qualitatively, which indicated that they all
have internal quality problems. They are poorly readable, not
very cohesive, and challenging to understand, making them
complex, difficult to reuse or extend, and difficult to mod-
ify and maintain. The result of the qualitative inspection is
in accordance with the threshold values used in the quanti-
tative identification of these classes. These classes can be a
risk to the project, as they make the tasks inherent to software
maintenance and evolution more complex due to the limited
understanding accompanying this type of class. Table 8 ex-
hibits the selected classes, showing their names, packages,
and systems. Appendix C presents the qualitative analysis of
each class.

8.1.3 Discussion about the Results of Case Study 1

The ten methods evaluated in this case study have relevant
complexity, size, and many parameters. They are problem-
atic entities within software systems due to their internal
structure, which has characteristics against the fundamental
principles of object-oriented programming. These methods
have clear opportunities for improvement, and identifying

such opportunities does not require much knowledge about
the software domain. The results of this study showed that
the proposed thresholds correctly pointed out these methods
as having metrics in the worst ranges of the metrics. There-
fore, we conclude that the proposed thresholds help identify
methods with design problems.

The results of the manual inspection for the 16 classes se-
lected in this study indicate that all 16 classes have problems
regarding their internal quality. They are less legible, less co-
hesive, challenging to understand, complex, complicated to
reuse or extend, and difficult to modify and maintain. The
result of the qualitative inspection agrees with the thresholds
used to select these classes. So, we concluded that the pro-
posed thresholds might identify classes that risk the project
since they make software maintenance and evolution more
complex.

Some studies show that software development profession-
als spend at least 30% to 50% of the time understanding the
code before they start maintenance [Paige and Meyer, 2008].
Avoiding expensive manual inspections is a valuable oppor-
tunity to improve software quality during the construction,
maintenance, and evolution phases. Using metrics and their
thresholds will be helpful in automatically identifying pieces
of software with design problems. We should carefully con-
sider the software with design problems when performing
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Table 9. Absolute and relative number of classes classified in the ranges suggested

| Metrics | +1 \ 0 \ +1OR0 | -1
NOF 892 (84.07%) | 133 (12.54%) | 1,025 (96.61%) 36 (3.39%)
NOM 710 (66.92%) | 226 (21.30%) 936 (88.22%) 125 (11.78%)
WMC 668 (62.96%) | 273 (25.73%) 941 (88.69%) 120 (11.31%)
DIT 715 (67.39%) | 222(20.92%) 937 (88.31%) 124 (11.69%)
LCOM | 805(75.87%) | 154 (14.51%) 969 (90.39%) 102 (9.61%)
NSM 990 (93.31%) 19 (1.79%) 109 (95.10%) 52 (4.90%)
NSF 961 (90.57%) 54 (5.09%) 1,015 (95.66%) 46 (4.34%)
SIX 649 (61.17%) |  252(23.75%) 901 (84.92%) 160 (15.08%)
NORM | 910 (85.77%) 78 (7.35%) 988 (93.12%) 73 (6-88%)
NSC 969 (91.33%) 48 (4.52%) 1,017 (96.85%) 44 (4.15%)

maintenance and are candidates for refactoring.

8.2 Case Study 2

The Case Study 2 analyzed the framework JHotDraw. We
chose JHotDraw for this case study because previous works
have attested to its high design quality [Riehle, 2000]. JHot-
Draw was implemented based on design patterns. Chris-
tensen and Henrik [2004] used it in a case study in the context
of teaching design patterns. Their choice was because they
consider JHotDraw a high-quality software system. Hegediis
et al. [2012] analyzed JHotDraw to investigate the impact of
design patterns on maintainability. They found that the use
of design patterns contributes to software maintainability.

Assuming that JHotDraw is well-designed, Case Study 2
aims to verify how our thresholds behave in evaluating a
well-designed software system. We expect that most mea-
sures of JHotDraw evaluate as having good internal qual-
ity. Such a result would suggest that the thresholds can as-
sess the internal quality of a software system as good as it is.
So, we could conclude that a measure in the Good/Common
range is most reliable concerning the qualitative expectation
about software quality and minimizes the false-positive eval-
uations problem. A false-positive appears when the class has
no structural issues, but the thresholds indicate the opposite.
We expected in Case Study 2 that most classes do not have
structural problems, and the thresholds do not reveal them.
This conclusion concerns false-negative occurrences when
the class has problems, and the thresholds do not indicate
them. In this case, it will also be minimized.

We evaluated JHotDraw 7.5.1 in the compiled version for
Eclipse available at Qualitas.class Corpus. According to the
collected data, this version has 66 packages and 1,061 classes.
Table 9 shows the evaluation of the classes of JHotDraw con-
sidering the proposed thresholds. Columns two to five show
the number of classes in absolute and relative values. Col-
umn +1 represents Good/Common range; Columns 0 and -
1 represent Regular/Casual and Bad/Uncommon ranges, re-
spectively, and Column +1 OR 0 with measure not falling in
the Bad/Uncommon range.

Observing the +1 OR 0 column, we may see that five out
of 10 of the proposed thresholds evaluate more than 95%
of the classes with good or regular quality, while less than
5% are considered bad. The remaining thresholds evaluate
at least 85% of the classes with good or regular quality. The

result of Table 9 shows another essential fact related to the ex-
cellent evaluation obtained by the JHotDraw metrics: in col-
umn +1 OR 0, 91.56% of classes are not evaluated as poor.

8.2.1 Discussion of the Results of Case Study 2

For all the evaluated metrics, most of the classes from JHot-
Draw were classified in the Good/Common range, a large
amount fell in the Regular/Casual range, and just a few fell
in the Bad/Uncommon range. Considering that the metrics’
statistical distributions have such characteristics, one might
think that this result is not surprising. But, the case of JHot-
Draw is significant because its measures are expressive in
pointing out the system’s high quality. The Good/Common
and Regular/Casual were evaluated in conjunction because
it is challenging to differentiate accurately whether a class is
of good or regular quality by employing manual inspection.

As noted by Ferreira et al. [2012], the Regular/Casual
range may be considered a recommendation that the structure
can be improved, although it is not necessarily an anomaly
occurrence. Therefore, problems related to the boundary es-
tablished for the Good/Common and the Regular/Casual
ranges do not have representative consequences for the quan-
titative evaluation of the software. However, the boundary
between the Regular/Casual and the Bad/Uncommon ranges
is subtle. It is worth noting that the thresholds do not dis-
pense evaluations made by experts. Another important con-
sideration is that, as indicated in Section 8, the evaluation of
method, class, or package by a single threshold is not recom-
mended in the quality assessment because a broader evalua-
tion provides quantitative results of greater breadth of accu-
racy.

We use RAFTool [Filo et al., 2014]7 to conduct some tests
on JHotDraw. RAFTool allows the possibility of establish-
ing a sorting criterion such that, by choosing, for instance,
classes classified by the number of fields as Regular/Casual,
the specialist may be aware of which class, even though not
being poorly evaluated, shows the highest value of the metric.
This assists in decision-making when using the threshold.

8.3 Answering RQ2.1, RQ2.2 and RQ2

RQ2.1 Can the proposed thresholds detect poor-quality
methods and classes? The answer to this question is YES.

7TRAFTool - Risk Artifacts Filter Tool.
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The results we have obtained in Case Study 1 indicate that the
Bad/Uncommon ranges defined in the metrics of our thresh-
old catalog are reliable. We observed a strong association
between the quantitative and qualitative results; therefore,
the study results show that applying the proposed thresholds
leads to a minimal “false positive” occurrence.

RQ2.2 Can the proposed thresholds detect high-quality
methods and classes? The answer to this question is YES.
The results we have obtained in Case Study 2 suggest that
the Good/Common ranges are reliable, i.e., the thresholds
may adequately detect the good structural quality of a piece
of software. Therefore, we may conclude that applying the
thresholds will lead to few “false-negative” occurrences. The
results also suggest that the occurrences of “false positive”,
i.e., when the class does not have a design problem, but the
thresholds indicate the opposite, will also be minimized. This
fact happens due to the high internal quality of JHotDraw.
We expected that most classes would not have design prob-
lems and that applying the thresholds would reflect this. The
result of Case Study 2 confirmed this assumption.

8.3.1 Summary of the Results

Considering the general research question, RQ2 Are the pro-
posed thresholds able to differentiate poor and good soft-
ware quality? The answer to this general research question
is YES. The thresholds evaluated through these case studies
suggest they may be applied to assess the quality of methods
and classes within object-oriented software. Their applica-
tion could lower the cost of software quality evaluation since
they can reduce the amount of software code that should be
inspected. However, it is essential to note that manual inspec-
tion done by a software engineer remains necessary for qual-
ity management. When a quantitative evaluation points to de-
sign problems in a piece of software, that piece should be the
subject of analysis by an expert. Therefore, the thresholds
provide a way for quantitative and qualitative evaluations to
complement each other, leading to a more efficient quality
assessment of object-oriented software systems.

9 Threats to Validity

Regarding representativeness, the sample is intrinsically a
threat to the validity of any empirical study. To minimize it,
we used a large dataset, Qualitas.class Corpus. This dataset
applies to software systems equivalent to or greater than
those used in other empirical studies on software metrics,
having more than 16,000 packages, 247,000 classes, and
1,600,000 methods.

When analyzing RQ1, we considered refactoring per-
formed in two software systems: JHotDraw and Eclipse. Al-
though the analysis performed with these systems indicates
that the thresholds are sensitive to the refactoring processes
at the package level, we can not claim that the results may be
generalized to other contexts.

In Case Study 1, we applied the thresholds to identify
whether the range Bad/Regular may aid in identifying meth-
ods and classes with poor design. The analysis was carried
out via manual inspection, which might be biased. To miti-
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gate bias in the analysis, we discussed the analysis between
the three authors of this paper.

The sample also may impact the generality of the results.
The example used in this study comprises various types and
domains of software systems. However, the data deriving the
thresholds are from open-source Java-based projects. Hence,
it is impossible to claim generality to other categories of soft-
ware systems. Besides, other languages might exhibit differ-
ent results.

Different software metric tools may implement the same
metric differently. So, the tools may report different results
of a software metric for the same software system. Qual-
itas.class Corpus [Terra et al., 2013] relies on Metrics, an
Eclipse plugin. Therefore, we may not ensure that the iden-
tified thresholds will apply to tools that do not implement
the software metrics in the same Metrics pattern. Implemen-
tation details are described in Metrics®.

The method to derive the metric thresholds is based on a
previous one defined by Ferreira et al. [2012]. Such a prior
approach is based on manual inspection of graphics, which
is an essential threat to the results. Therefore, to avoid this
threat, our method does not use manual inspection of graph-
ics to define the thresholds.

10 Final Remarks and Future Work

Knowledge of the thresholds is of fundamental importance
to effectively using software metrics to manage the internal
quality of software systems. In our previous research, [Filo
et al., 2015], we improved the method proposed by Ferreira
et al. [2012] to derive software metric thresholds. We based
our strategy on deriving metric thresholds by analyzing the
statistical distribution of measures found in practice. We ob-
served that our metrics fit a heavy-tailed or skewed-right
distribution. Exploring the properties of the corresponding
data distribution of each metric, we proposed three ranges
of values for the metric thresholds: Good/Common, Regu-
lar/Casual, and Bad/Uncommon. We applied the resulting
approach, defining a catalog of thresholds for 18 object-
oriented software metrics and assessed them in a proprietary
project. The evaluation results showed that these thresholds
effectively detect when a software system has a high inter-
nal quality and does not show quality where there is no. The
metrics encompass the quantitative evaluation of methods,
classes, and packages. Although they do not necessarily ex-
press the best design principles established for Software En-
gineering, they reflect the quality that most software sys-
tems follow and may be considered a benchmark for object-
oriented software systems.

In this article, we conducted a deeper evaluation of the
proposed 18 thresholds to investigate, in a broader context,
whether they can evaluate the internal software quality. We
summarized our contributions as follows.

* We present a new illustrative example of the applica-
tion of our method describing the data analysis of the
McCabe Complexity (VG) metric.

8http://metrics2.sourceforge.net/
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We detailed the 18 software metrics considered in this
research and discussed their thresholds. For each met-
ric, we provide its application-level -method, class, or
package- its definition formula (when necessary), and
design implications.

We experiment with real-based package restructuring
processes to evaluate the ability of our thresholds to
identify software quality enhancement.

We conducted two case studies to evaluate whether the
proposed thresholds can differentiate pieces of software
well designed and pieces of software with design flaws.
We showed a qualitative and quantitative evaluation of
the thresholds, with the help of a system expert, consid-
ering the metrics at class, method, and package levels.
We show evidence that applying thresholds may lead to
few false-positive and false-negative occurrences.

We provide evidence of the benefits of using thresholds
of object-oriented metrics to assist developers and prac-
titioners in the proper quantitative evaluation of internal
software quality.

To the best of our knowledge, our metric threshold catalog
is the largest one described and empirically evaluated in the
literature so far. The proposed thresholds have been used in
other studies that the co-authors of this paper have conducted
with other researchers. Souza ef al. [2017] have applied these
thresholds to define detection strategies for five bad smells:
Large Class, Long Method, Data Class, Feature Envy, and
Refused Bequest. Their results show that the strategy based
on the thresholds defined in our catalog is significantly help-
ful. Sousa et al. [2017] developed a tool for detecting bad
smells in software systems based on software metric thresh-
olds. The authors have evaluated their tool using our pro-
posed threshold catalog. Also, Berani¢ and Heric¢ko [2019]
in their paper said: “Fil6 et al. [2015] introduced two main
improvements. The first is connected to the identification of
thresholds. Instead of visual identification, Fil6 et al. [2015]
introduced the use of two percentiles that divide the val-
ues into three areas. The second improvement is connected
to threshold naming. They complement existing names to
understand each defined threshold better”. They presented
“derivation approaches resulting in concrete threshold values
used for evaluating software projects.”

We identify the following main future work: (i) it is essen-
tial to evaluate the effectiveness of our catalog to aid main-
tenance or refactoring tasks along the life cycle of software
systems in open-source and proprietary projects; (ii) investi-
gating the correlation between these thresholds and faults in
software systems; (iii) deriving thresholds for other software
metrics; (iv)evaluating the thresholds with systems different
from the ones in Qualitas Corpus; and (v) evaluating whether
the thresholds may be impacted regarding software systems’
characteristics such as application domain, type, size, and
programming language.
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A An Outline and a Detailed De-
scription of each Metric and their
Thresholds

In this appendix, we describe the sofiware metrics consid-
ered in this research and discuss their thresholds. For each
metric, we provide the following information: (1) level to
which the metric applies (method, class, or package); (2)
definition; (3) formula - if necessary; and (4) implications
for design.

1. Afferent Coupling (AC)

1. Level. Package.

2. Definition. The number of classes outside a package
that depends on classes inside the package Metrics Metrics
[2014].

4. The implication for design. The higher the AC value, the
greater the responsibility of that package and its relevance
within the software architecture. A package with many exter-
nal dependencies may be a risk artifact since when it is nec-
essary to make any change, this may directly impact many
classes and indirectly have consequences on the stability of
the entire application. Packages with high AC values should
receive a more significant effort of testing and monitoring, as
any change may become critical to the software. The thresh-
old of AC identified in this work helps indicate a high AC
value. Lanza and Marinescu [2010] reported that responsibil-
ities within object-oriented software must be uniformly dis-
tributed in software artifacts. Knowing that an AC value is
high allows us to divide the responsibilities of an overly in-
fluential package into more cohesive packages.

2. Efferent Coupling (EC)

1. Level. Package.

2. Definition. The number of classes inside a package de-
pends on classes outside the package [Metrics, 2014].

4. The implication for design. The higher the EC value, the
higher the number of classes the package depends on. A high
value of EC indicates that the package could be more un-
stable since a change outside them would impact the pack-
age classes at a high level. Keeping the minimum EC value
means obtaining a package with greater self-sufficiency. The
thresholds derived suggest that most of the packages in
object-oriented software systems depend upon no more than
six classes. Occasionally, the packages depend upon up to
16 classes, but rarely do they depend upon more than that. A
possible decision about a software package with a high EC
value (Bad/Uncommon) would be to divide it into smaller
and possibly more cohesive packages.

3. Method Lines of Code (MLOC)

1. Level. Method.

2. Definition. Count and sum non-blank and non-comment
lines inside method bodies Metrics [2014].

4. The implication for design. For [Fowler ef al., 1999],
since the early days of programming, it has been realized that
the larger a procedure, the more difficult it is to understand.
Fowler suggests that many problems in object-oriented soft-
ware systems are due to long methods, which are problem-
atic because they have much information besides complex-
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ity. Smaller methods are more natural to understand, reuse,
and overwrite, making the maintenance and evolution of the
system less complicated and cheaper. Sommerville [2012]
says that code size is one of the most reliable predictive-
error-prediction metrics. It is verified here, with an empirical
study, that most methods have just a few numbers of code
lines. This observation and our evaluation suggest that meth-
ods should have at most ten code lines.

4. Number of Classes Per Package (NOC)

1. Level. Package.

2. Definition. The total number of classes in the selected
scope Metrics [2014].

4. The implication for design. A package is a grouping of
classes and interfaces related to the same purpose, providing
access protection and ease of localization Oracle [2014]. If
we add more classes to a given package, the classes and in-
terfaces grouping tend to be less interrelated. A higher value
of NOC suggests a possible split into smaller packages, mak-
ing it easier to find related classes and understand the pack-
age domain more quickly. To identify packages that do not
follow the pattern of most ones developed in object-oriented
software, we also suggest using these thresholds to evaluate
possible adaptations within the project.

5. Number of Fields (NOF)

1. Level. Class.

2. Definition. The total number of fields is defined in the
selected scope [Metrics, 2014].

4. The implication for design. According to [Fowler et al.,
1999], a class with many attributes indicates that its mod-
eling may contain some problems and should be restruc-
tured by grouping related attributes into new objects. These
classes may become problematic because they may store
many states, carrying unnecessary complexity. In this way,
we may use the proposed thresholds to identify candidate
classes to undergo a refactoring process, which may raise
the quality level of the software. According to the threshold
values suggested in this work, a class with more than eight
attributes is a candidate for refactoring.

6. Number of Methods (NOM)
1. Level. Class.

2. Definition. The total number of methods is defined in the
selected scope [Metrics, 2014].

4. The implication for design. According to Lanza and
Marinescu [2010], we must uniformly distribute the system’s
logic between classes in a good object-oriented design. A
class with many methods tends to be more complex. It has
many responsibilities, breaking one of the main principles of
object-oriented systems, which suggests that a class should
take only one responsibility [Martin, 2003]. In this direc-
tion, the derived threshold indicates that we may construct
the classes with, at most, six methods. Classes with up to
14 methods occur occasionally and should be candidates for
refactoring.

7. Number of Overridden Methods (NORM)
1. Level. Class.

2. Definition. Substitution of the total number of methods in
the selected scope to an ancestor class Metrics [2014]. The
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calculation of NORM excludes foString, equals, and hash-
Code methods.

4. Implication for design. A high value of this metric indi-
cates that the superclass may not be an appropriate parent
class for the subclass, suggesting problems in the project’s
inheritance hierarchy Sommerville [2012]. Therefore, the
threshold identified as Good/Common suggests that, typi-
cally, child classes override up to two methods of the par-
ent classes. This threshold indicates that child classes reuse
parent-class behaviors by overwriting a reduced number of
methods.

8. Number of Children (NSC)

1. Level. Class.

2. Definition. The total number of direct subclasses of a class
Metrics [2014]. A Class implementing an interface counts as
a direct child of that interface.

4. Implication for design. Classes with many children are
difficult to modify and will require more testing on the sys-
tem because a change in the parent class may affect all of its
child classes Chidamber and Kemerer [1994]. Besides, there
is a higher likelihood of misusing the parent class abstrac-
tion due to this more significant number of children. Such a
situation indicates that the designer has improperly applied
the inheritance in the project. The thresholds we suggested
establish that a class with four or more children may be a
software maintenance risk. This risk is due to the impact
a change in the Class may have on the system. The sug-
gested thresholds follow other works, Benlarbi et al. [2000],
which have derived values two and three. A result is un-
der the Regular/Occasional range set forth herein. Since we
use three ranges of values, the Good/Frequent and Regu-
lar/Occasional ranges are also distinct.

9. Number of Static Fields (NSF)

1. Level. Class.

2. Definition. The total number of static fields in a class.

4. The implication for design. A static field creates a field
belonging to the Class instead of being associated with the
class instance Oracle [2014]. All class instances share the
static field in a fixed place in memory. Any changes in the
value of these fields reflect on all instances of the Class.
Static fields greatly benefit object-oriented software projects
developed on the Java platform Bloch [2008]. An example
is the implementation of the Singleton design pattern, which
guarantees the existence of only one instance of a given class,
providing global access to that object. Static attributes may
also be exposed via public static final modifiers, assuming
that constants form a cohesive part of the abstraction the
Class provides. However, classes that overuse this feature
have acquired a bad reputation because it prevents develop-
ers from thinking about objects. An example of misuse is the
constant interface Bloch [2008], which are interfaces made
up of attributes static final, each representing the exporta-
tion of a constant. Classes implement these constants only to
avoid the need to qualify the interface name. We expose the
details using these attributes while implementing class func-
tionalities, and a class suffers the risk of hiding information.
Ifthe interface is changed, the behavior of the inherited Class
may also be changed, and there is no good project encapsu-
lation. An alternative that best translates object-oriented pro-
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gramming, in this case, is the use of enumerated types (enum).
Enum consists of a fixed set of constants, which translate co-
hesive groups of constants possibly necessary for the applica-
tions. The proposed threshold may indicate a high value for
NSF, which allows identifying classes in the software using
this feature excessively or even creating a simple mechanism
of detecting the constant interface.

10. Number of Static Methods (NSM)

1. Level. Class.

2. Definition. The total number of static methods in a class.
4. The implication for design. The static method handles
only static attributes. We invoke it with the class name with-
out instantiating an object. This kind of mechanism breaks
the concept of object-oriented programming, making it some-
what equivalent to procedural programming. However, it has
practical utility in object-oriented software development on
the Java platform Bloch [2008]. One of the scenarios in
which this kind of mechanism is valuable is a simple static
method that returns an instance of the Class rather than using
the constructor. Doing this allows the Class to be instance-
controlled, which causes, for example, a class to enforce Sin-
gleton behavior, using the constructor private. Another possi-
ble use of this feature is utility classes, clusters of static meth-
ods whose instantiation would not be justifiable. However,
its use also has disadvantages. The breakdown of the object-
oriented paradigm represented by this type of mechanism
negatively affects several aspects related to object-oriented
programming software quality. Static methods worsen soft-
ware testability once unit tests are based on the concept that
a method may run and be evaluated independently Hevery
[2008]. The dependencies of the method tested are simulated
with the possible results and how the evaluated code will re-
spond, regardless of the good or bad functioning of the depen-
dent code. Any method that depends on some static method
has its testability impaired, as the static method will consis-
tently execute, violating the idea of unit tests. The problem
maximizes when this method is very complicated. Another
downside of static methods is that they make the software
less flexible since they may not overwrite. The thresholds
suggested values may discriminate, given the way software
is developed; what is a Good/Common, Regular/Casual and
Bad/Uncommon for the NSM metrics, giving a quantitative
means of distinguishing what is a high or low value to eval-
uate the use of static methods.

11. Number of Parameters (PAR)

1. Level. Method.

2. Definition. The total number of parameters in a method.
4. The implication for design. For [Fowler ef al., 1999],
it is tough to understand a long parameter list, and they be-
come inconsistent and confusing. The parameter list does not
need to be regularly changed every time more data is or is no
longer needed if the parameter is an object instead of a primi-
tive type. This fact reduces the number of object-oriented pro-
gramming parameters relative to traditional paradigms. The
derived threshold translates this observation into statistical
terms. Methods with up to two parameters are the most fre-
quent and represent the level of quality that software devel-
opers usually work, providing a reference for evaluating the
methods through these metrics. The low value indicates that
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object-oriented programming tends to have a small parame-
ter list, and the Regular/Occasional range, with a value of
four, is also low.

12. Specialization Index (SIX)

1. Level. Class.

2. Definition. [Lorenz and Kidd, 1994] have defined SIX
metrics as the ratio of the number of overridden methods
in the evaluated Class weighted by the Class’s DIT metric
over the Class’s number of methods (SIX = NORM x
DIT/NOM).

3. Formula. The specialization index’s average is NORM *
DIT /NOM [28].

4. The implication for design. This metric aims to evaluate
how much a given class overrides the behavior of its super-
classes. According to the metric authors, the higher the spe-
cialization index value, the greater the execution of specific
behaviors at run time. This indicates a more complex class,
suggesting that it receives more testing effort. Also, when
a class has a high degree of Specialization Index, its child
classes may not conform to the abstraction of the parent class.
Thus, identifying a high value for SIX is significant because
it allows for the identification of classes with high specializa-
tion, which contributes significantly to the change of behav-
ior of the software at run time. This fact makes the software
more prone to complex errors and makes it challenging to
test. Therefore, the thresholds may help identify classes out
of compliance with the projected inheritance hierarchy.

13. McCabe Complexity (VG)

1. Level. Method.

2. Definition. The VG metric aims to assess the complexity
of a program McCabe [1976]. VG represents the code exe-
cution flow employing a graph, where the nodes represent
program commands, and a directed edge from node A to B
represents that the program flow may go from A to B. VG
counts the number of independent paths in the program exe-
cution graph.

3. Formula. The metric is given by M cCabe = E— N + P,
where, given a graph, F is the number of edges in the graph,
N is the number of nodes, and P is the number of connected
components.

4. The implication for design. The metric McCabe Com-
plexity has been used to evaluate the complexity of meth-
ods in object-oriented software. According to [Sommerville,
2012], this metric is related to the facility of understanding
the software at the method level. Keeping methods with rea-
sonable cyclomatic complexity, as suggested by the identi-
fied thresholds, We expect the code to be easier to understand,
less error-prone, and easier to change and reuse. [Lopez and
Habra, 2005] evaluate the threshold value, 10, suggested by
the metric authors themselves, in object-oriented program-
ming. The authors conclude this value cannot sufficiently
discriminate sophisticated methods in object-oriented soft-
ware projects. More than 90% of the evaluated methods have
a complexity of less than five, and only 2% of the meth-
ods have a complexity more significant than 10. This fact
makes the value 10, suggested by the metric authors for
functional programming, inefficient in the context of object-
oriented programming. These results are consistent with the
thresholds suggested in this work, two and four to separate
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the Good/Common, Regular/Casual, and Bad/Uncommon
ranges.

14. Weighted Methods per Class (WMC)
1. Level. Class.

2. Definition. The WMC metric consists of the sum of the
complexities of the methods that compose a class. The au-
thors of this metric leave the definition of complexity open.
In Metrics, the tool used to collect metrics, WMC is the
sum of the McCabe Cyclomatic Complexity of the methods
within the Class.

4. The implication for design. Chidamber and Kemerer
[1994], consider this metric an indicator of the development
and maintenance effort of the Class in the analysis. The
higher the number of methods in a class, the more significant
the tendency of the Class is less specific, thus limiting its po-
tential for reuse and impairing cohesion. For Sommerville
[2012], the larger the metric value, the more complex the ob-
ject will be. Complex objects are more challenging to under-
stand and, therefore, difficult to maintain. These objects are
also more challenging to reuse since the high complexity im-
pairs class cohesion. Therefore, by keeping the WMC values
within the patterns identified in this work, it is expected that
software quality attributes such as ease of maintenance, ease
of comprehension, and reusability will be improved. Besides,
the value 11, suggested in this paper to classify the classes in
the Good/Common, is close to or within the acceptance range
established in other works [Benlarbi et al., 2000; Chhikara
et al., 2011; Rosenberg et al., 1999; Kaur et al., 2013; Shat-
nawi, 2010].

15. Depth of Inheritance Tree (DIT)
1. Level. Class.

2. Definition. DIT metric represents the distance from a
given class to the root class in the inheritance tree [Chi-
damber and Kemerer, 1994].

4. Implication for design. The result we have obtained
agrees with the thresholds proposed by Ferreira et al. [2012],
who found the mean value of DIT to be two. They consider
that classes with DIT greater than two may indicate a bad use
of inheritance in the system. However, in this research, the
ranges Regular/Casual and Bad/Uncommon have also been
identified. We may explain this action because the sample
used in this study is significantly big and has higher metric
values, even if infrequent but significant in tail formation.
For this reason, we use another distribution as the best fit
for the values of the metric, which has asymmetry on the
right, and, consequently, the typical value is not the average.
This fact allows for identifying values in the Good/Common,
Regular/Casual, and Bad/Uncommon ranges. However, al-
though we do not consider the mean value as a representative,
the value found in this work for the Good/Common range
is the same one found as typical by [Ferreira ef al., 2012].
According to Sommerville [2012], the higher the depth of
the inheritance tree, the more complex the project will be.
The deeper a class is in a class hierarchy, the more methods
it inherits, making the class more complicated. The derived
threshold for the Good/Common range translates into a shal-
low inheritance tree, with no more than two levels, which
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holds the child classes close to the root classes in the inheri-
tance hierarchy.

16. Lack of Cohesion in Methods (LCOM)

1. Level. Class.

2. Definition. LCOM measures the number of pairs of meth-
ods of a given class where the similarity is zero, subtracted
from the number of pairs of methods where the similarity is
nonzero. The similarity between the two methods occurs in
frequently using variables in an instance of the class [Chi-
damber and Kemerer, 1994].

3. Formula. If m(4) is the number of methods accessing an
attribute A, calculate the average of m(4) for all attributes,
subtract the number of methods m and divide the result by (7-
m). A low value indicates a cohesive class, and a value close
to one indicates a lack of cohesion and suggests the class
might better split into several (sub)classes [Metrics, 2014].
4. Implication for design. Cohesion facilitates the under-
standing, reuse, and maintenance of the code [Chidamber
and Kemerer, 1994; Fowler et al., 1999; Sommerville, 2012].
LCOM measures the absence of cohesion, so the higher
the value of the metric, the less cohesive the class. A high
value of LCOM indicates that the class has many differ-
ent tasks; it is better to use more specific objects, splitting
a non-cohesive class into smaller classes with higher cohe-
sion. Alshayeb [2009] has evaluated the impact of refactor-
ing on cohesion metrics, including LCOM. The results show
that refactoring leads to better class cohesion. The suggested
thresholds, based on the quality standards with which object-
oriented software has been developed, indicate the high value
of LCOM, allowing the identification of classes that should
be refactored to improve the quality of the software.

17. Nested Block Depth (NBD)

1. Level. Method.

2. Definition. NBD measures the maximum depth of nested
blocks in the program. Example, three commands nested in
a method characterize a maximum block depth of three.

4. The implication for design. According to Sommerville
[2012], deeply nested statements are challenging to under-
stand and potentially prone to errors. Therefore, by keeping
methods with a low NBD value, they are expected to become
more readable and less prone to errors. We have found that
the upper bound of the Good/Common range for this metric is
one. Besides that, when NBD is more significant than three,
the method is classified as Bad/Uncommon, suggesting that it
should be refactored by splitting it into two or more methods.

18. Normalized Distance (RMD)

1. Level. Package.

2. Definition. RMD metric proposes balancing between In-
stability and Abstraction [Martin, 1994]. Instability () is a
ratio between the number of efferent couplings and the sum
of afferent and efferent couplings in the rated package. In this
metric, I = 0 indicates the maximum stability, and / = 1 is
the maximum instability. In other words, the lower the affer-
ent coupling (service delivery) relative to the efferent cou-
pling (service consumption), the closer to 1 will be the mea-
sured value, and the package will show greater instability.
Abstraction (A) is a ratio proportion between the number of
abstract classes and the total number of classes in a pack-
age. Packages having abstraction must have outer classes
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that extend it (afferent coupling). Considering that afferent
couplings minimize the instability, it suggests a relationship
between the minimization of instability through increasing
abstraction. However, Martin [1994] argues for avoiding de-
pendence on unstable modules. Therefore, unstable packages
should not be abstract but concrete. Given the concepts of ab-
straction and instability, Martin [1994] proposes a notion of
balancing the values of these metrics. The purpose of this
is to discourage dependence on unstable packages. A pack-
age may be partially extensible because it is partially abstract.
Since the partially stable package, its extensions are not sub-
ject to maximum instability. For the ideal relationship be-
tween instability and abstraction, packages with a minimum
degree of instability should have a maximum degree of ab-
straction ((I, A) = (0,1)) and packages with the maximum
degree of instability ((I, A) = (1.0)). A line between these
points may be drawn on a chart. This line, named by the au-
thor as Main Sequence, represents the balance between ab-
straction and instability that is considered acceptable. A pack-
age in the Main Sequence is not abstract for its stability nor
so unstable for its abstraction; it presents an acceptable de-
gree of balancing concrete and abstract classes concerning
their afferent and efferent couplings. For these reasons, the
Normalized Distance metric measures the perpendicular dis-
tance of (I, A) of the Main Sequence.

3. Formula. (1) = Ce/(Ca + Ce);

A = NumberAbstractClasses / TotalNumberClasses
andRMD =[4A+1— 1]

4. Implication for design. According to the metric defini-
tion, a more balanced relationship suggests a reasonable bal-
ancing of concrete and abstract classes to their afferent and
efferent couplings to obtain a more stable design that is less
sensitive to software changes and represents a breakthrough
in software quality. The thresholds suggested herein, to ac-
complish this, can discriminate a high value for this metric.
These values may help evaluate the balance of the package.
Identifying packages with high values of this metric may be
important in the architectural evaluation of the project, seek-
ing to evolve and better balance the division of responsibili-
ties between software packages.



Evaluating Thresholds for Object-Oriented Software Metrics

B Inspected Methods

This appendix presents the qualitative evaluation of each
method considered in Case Study 1 (Section 8.1.1).

addGetterSetterChanges. This method has 34 lines of code,
McCabe equals nine, five parameters, and a nested block
depth equals four. Two of its parameters are of boolean type,
usingLocalGetter, and usingLocalSetter. We use these pa-
rameters in another two class methods: checkinHierarchy
and checkMethodNames. They are related, so we may replace
them with one Parameter Object. If we do that, the method
would be classified as Regular/Casual because it would have
four parameters. The method name refers to the addition of
changes in the plural, which suggests the method is responsi-
ble for making more than one change related to the addition
of getters and setters for type refactoring SelfEncapsulated-
Field, which is a class responsibility. Besides, the method
has two snippets of source code that perform different tasks,
which, when exported to two smaller methods, will take it
out of the Bad/Uncommon range for the four metrics used.

analyseAssignment. It has 89 code lines, McCabe equals
36, 5 parameters, and a nested block depth equals four. It
has a switch-case with two cases where the executed code
has more than ten lines and is deeply nested. We may export
these parts using two new, more unique methods. It has a se-
ries of ifs in sequence. Exporting these code snippets to other
methods by defining a single responsibility is possible. The
method has many ifs inside of loops that make it difficult to
understand the code. The method performs numerous tasks;
it is very complex, inducing it to have a poor qualitative eval-
uation.

diffList. It has 163 lines of code, McCabe equals 54, six
parameters, and a nested block depth equals eight. It has a
switch-case with four cases in which the executed code has
many rows and is deeply nested. Exporting these parts to
four new, better-defined, and more straightforward methods
is possible. Another critical point regarding this method’s
quality is that it has five points of return precisely because
the method has more than one well-defined responsibility.

drawSubCategoryLabels. This method has 88 lines of code,
McCabe equals 14, six parameters, and has a nested block
depth equal to four. It performs tasks associated with graphic
design. It has a series of ifs, which verifies whether the
worked edge is of the type TOP, BOTTOM, LEFT, or
RIGHT that could be replaced by a switch-case, making it
better in terms of code quality. Analyzing the method, what
attracts the most attention is that within these four ifs, it has
duplicate code due to the use of different parameters in meth-
ods that are called by it. It is possible to export this duplicate
code to a new method that receives these parameters accord-
ing to the type of border. Repeat this situation with four more
ifs at the end of the method. These two parts of four ifs deal
with different design-related aspects of the method; they may
be exported to new methods better defined and with a more
specific responsibility.

findLocalMethods. Has 240 lines of code, McCabe equals
86, 18 parameters, and it has a nested block depth equal to
seven. The method has related parameters, which we may ex-
port to a class; it is large and complex and uses gofos. These
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factors undermine its readability and comprehension.

prepMinion. This method has 287 lines of code, McCabe
equals 50, five parameters, and a nested block depth equals
seven. Going through the method, one realizes it is responsi-
ble for making many preparations (called “Minion”) related
to the database connection command. This method is too
long and has many comments, where the largest has more
than 30 lines. This type of situation corresponds to bad smell
Comments ?, in which it makes attempts to compensate for
the difficulty of understanding the code. We could not estab-
lish the method’s purpose because its name is unclear, and it
has many responsibilities.

readAjSClassAttributes. Has 102 code lines, McCabe
equals 35, six parameters, and a nested block depth equals
six. This method has four large blocks of source code, which
could be exported individually to methods that serve a single
purpose and help future understanding. Two other methods
in the class are similar to this: readAjdSMethodAttributes
and readAjSFieldAttributes. This fact shows that the AtA-
jAttributes class could be sub-split into three classes that
deal with attributes of type class, method, and field. Although
not directly related to the method level, we observed from the
results obtained from this and other inspected methods that a
class dealing with more than one responsibility tends to have
more complex methods.

REPTree.Tree#buildTree. It has 137 code lines, McCabe
equals 29, 10 parameters, and nested block depth equals four.
We perceive qualitative analysis as a recursive method that
generates a data structure in the tree format. It has several
return points, which makes it difficult to understand. From
the code’s comments, this method performs several tasks sep-
arated by more than one space. The idea is to export each
stretch to a method that performs a single task.

startFileInternal. It has 90 code lines, McCabe equals 21,
nine parameters, and has a nested block depth equal to four.
Despite what the method name suggests, it accomplishes
much more than initializing a file internally, although the
tasks seem related. The idea is to extract the responsibilities
for private methods to facilitate understanding the code and
reduce its complexity.

visitBranchlInstruction. It has 31 code lines, McCabe
equals five, five parameters, and a nested block depth equals
four. It is precisely within the lower limit of the thresholds for
the four metrics. So, a subtle difference exists between being
evaluated as Bad/Uncommon by thresholds or evaluated as
Regular/Casual. Manual inspection has disclosed a relatively
acceptable method. It is possible to notice interest outside of
its context related to the log register that appears inside an
if, which checks whether the application is in DEBUG mode.
The method’s purpose is not to log a common interest spread
by the application. A correct way to proceed with logging
would be to call a class whose specific purpose is this. If we
remove the if from the code by triggering a specific method
of a class responsible for /og registration, MLOC, NBD, and
VG metrics, we would have ranked it in the Regular/Casual.
We also observe that all the class methods use three of five
parameters. This fact suggests a relationship between these
parameters that may constitute a new system class.
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C Inspected Classes

This appendix presents the qualitative evaluation of each
class considered in Case Study 1 (Section 8.1.2).

CloneableEditor. It does not have a well-defined goal.
There are parts of log code, file manipulation, and graphics
component manipulation. It deals with the interaction with
the user and a series of manipulations, having many respon-
sibilities. To understand this class, it is necessary to refactor
it to more specific classes.

CompilationUnitEditor. It has a depth of inheritance tree
DIT equal to 8, and consequently, the project becomes more
complicated due to the arduous task of understanding this
hierarchy. Besides the complexity inherent in the class size,
it inherits more methods and becomes even more complex,
making it difficult to describe a well-defined role. This
fact strongly suggests that the inheritance hierarchy may be
wrong. There are so many methods in the class that it is hard
to establish a specific purpose that agrees with the cohesion
deficit shown by the reference value. The class seems to be
difficult to reuse and maintain.

CtxHelpTreesubsection. This class has a depth of inheri-
tance tree DIT equal to six, a complex inheritance hierarchy.
It has a set of interrelated constants, and it would be better
to replace it with an enumeration structure (enum). Although
the class has mostly straightforward methods, they lack a re-
lationship between them. Maybe grouping them into more
cohesive classes with specific roles will better describe the
project and facilitate understanding and maintenance. The
class is a candidate for refactoring because it performs tasks
that should be done by more than one class.

DependencyManagementsubsection. It has a high DIT
value and, in addition to implementing many tasks, has many
methods, which results in a complex class. It also has a series
of constants better placed in an enum. We observe that the
class treats a series of roles. Make the program more read-
able, and likely the most straightforward maintenance; plac-
ing them in more cohesive classes would be better.

DeploymentDisplay. It displays a Swing visual component.
The code should be in a control layer, supposing an MVC
architectural standard. An example of better componentiza-
tion would be, for instance, the forward and back JButton be-
ing a specific navigation component. Another essential point
is that this class has six methods that show duplicate code,
which could be in a single method with the proper parame-
ters.

GTKFileChooserUL. It is a huge class that could be split-
ted into more classes. It has many attributes, shown in more
cohesive subgroups within the class code. There is no space
between the more cohesive groups of attributes, and when
the group changes, there is a series of break lines that sug-
gest a new group of more related attributes. Four attributes
are related to creating a new folder, which could be in a class
for a new folder creation action, along with the associated
behaviors. The programmer is aware of a more cohesive rela-
tionship between the declared attributes. He sees it through a
grouping in the class, which is not ideal considering software
quality. The class is large and complex, and it isn’t easy to un-
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derstand its specific purpose. There are even empty methods.
It could be a better user interface class.

InfoProduct. This class is against the basic principles of soft-
ware architecture because it contains the same class code re-
ferring to view, control, and access database, even with at-
tributes that are string with SQL commands. This class in-
cludes screen configurations and does not compose it well
within the view layer.

JarPackageWizardPage. It is a view component that repre-
sents the first page of the JAR export option in Eclipse. It has
many attributes, mainly type Button. One perceives a deterio-
rated quality standard in the classes of Ec/ipse responsible for
the screens, visible as poorly componentized. For instance, in
this class, attributes related to export options and treatments
of that data could be componentized in another class. Due
to the lack of componentization, these classes become com-
plex, with many attributes, constants, and specialized behav-
iors. Moreover, due to this complexity, the class is neither
qualitatively nor quantitatively cohesive.

JoinNode. The class’s comments suggest that it is not cohe-
sive. The comment says that it represents a join result for SE-
LECT and INSERT-SELECT for data manipulation type op-
erations. It has two responsibilities, even at the project level.
The code has a long and complex class with many attributes
and constants. Constants should be in an enum. It seems to
have a bad smell Comments because it presents dispropor-
tionate comments to the commented sections, showing a lack
of legibility that tries to be compensated with an extensive
comment. We evaluate this class with low cohesion, complex,
and should be a candidate for refactoring.

JRCTXVisualView. This class is associated with a system
screen. It has a class of controller associated with it and what
seems to be some attributes that are sub-components of the
screen in question. The class is big, and it is not easy to estab-
lish a specific purpose for the screen type. The comment does
not contain meaningful information: Top component displays
something. The class has many attributes and methods han-
dled in isolation, indicating low cohesion. So, after analyzing
the class, we recommend it as a candidate for refactoring.

JSVGCanvas. It is a seemingly well-programmed class with
short lines that allow for proper viewing and concise com-
ments. Their methods are short. But, it is a massive class with
a general purpose of defining a Swing component due to the
comment for the class. There is insufficient componentiza-
tion for the class to present clarity and uniqueness within the
project. One may componentize the actions and items on the
screen in less complicated classes with a definite purpose.

JTitledPanel. It is a view class that exposes a title-related
panel or the upper region of a screen. This class has three
inner classes that undermine its evaluation. It visibly needs
improvement, with the division of responsibilities into other
classes with better cohesion. There are two JButtons for min-
imization and maximization and several methods of manipu-
lating actions on them. We may export this responsibility to
a new class, which possesses cohesion and uniqueness con-
cerning this type of action. Despite this, the class shows lean
and well-defined methods, and a better definition of individ-
ual class responsibilities is needed.



Evaluating Thresholds for Object-Oriented Software Metrics

SAX2DTM?2 (jre-1.6.0/xalan-2.7.1). This class implements
a Document Table Model (DTM) for XML conversion to
a table structure using SAX2 (Simple API for XML). This
class seems to have bad smell comments, as the comments
are not concise. There is more than one commented attribute
with the comment of more than ten lines, as well as lines
of code for overly commented methods. The class exposes
many methods, which show many ties and control structures.
It has some empty methods, without any implementation,
publicly exposed. Despite a well-defined purpose, the
practice does not show that the class is cohesive and should
be a candidate for refactoring by exporting attributes and
methods to other classes that perform specificities related
to the conversion. We recommend implementing the code
referring to log present in a specific class. Also, it is possible
to see duplicate code in this class. It extends SAX2DTM by
deploying conversion-related optimizations and overwriting
operations that may be performed more efficiently. Also,
it is possible to see duplicate code in this class. The class
commentary references the limitation of the extensibility of
the class due to the manipulation of direct aspects related
to performance, which may impact its internal and external
quality aspects, such as extensibility. The comments in the
class expose its fragility, as they suggest that one should
be very careful in changing it. All this indicates that it is a
challenging class to modify, understand, and reuse, with low
attributes on the internal quality that may directly impact its
attributes of external quality.

SimpleCSMasterTreesubsection. When initializing the
class inspection, we observed an extensive list of constants
that impair the evaluation. They better group into an enum,
whose name could also tell more about its usage. This class
has attributes of type Action, indicating the separation of ac-
tions into objects that treat them more singularly. This fact
did not occur in the other analyzed class of the same soft-
ware: DependencyManagementsubsection. Although this
has happened, the class handles several actions that are better
grouped into different classes.

SVGFlowRootElementBridge. It has many constants,
which should be in an enum type structure, better modular-
izing the code and making it more readable. It has many
methods, many overwritten, some very long, and different
purposes. It is better to group the methods into smaller, more
cohesive classes.
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D Maetrics Description
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Metric Description
AID Average inheritance depth
of a class
AMC Average Method Complexity
ATFD Access To Foreign Data
AvglLineCode average size of
methods in a class in lines
of code
AvgCyclomatic the average value of
cyclomatic complexity in the
methods in a class
AvgCC Average Cyclomatic Complexity
[McCabe 1976]
ACAIC [Briand et al.1997]
ACMIC [Briand et al.1997]
AMMIC [Briand et al.1997]
CA Afferent Coupling [Martin 1994]
CAM Cohesion Among Methods
CAMC Cohesion among methods of
classes
CBO Coupling Between Object
CE Efferent Coupling [Martin 1994]
CFC Complexity Metric
CcC Cyclomatic Complexity
CC Changing Classes
[Marinescu 2002]
CYCLO Cyclomatic Complexity
COF Coupling Factor
CINT Coupling Intensity
CM Changing Methods
Coh Variation of LCOM5
[Briand98]
CNR Number of Constant Refinements
CTA Coupling through data abstraction
CBI Coupling based on inheritance
CLD Class-to-leaf depth
DAC Data abstraction coupling
DAM Data Access Metric
DCC Direct Class Coupling
DCd Same as TCC
DCi Same as LCC
DIT Depth of Inheritance Tree
DP Dynamic polymorphism
in inheritance relations
DMMEC [Briand et al.1997]
DPA Dynamic polymorphism in ancestors
DPD Dynamic polymorphism
in descendants
Export every exported event
EncF Encapsulation Factor
FAN-IN
FUN-OUT number of other classes
referenced by a class
ICH Information-flow-based cohesion
ICP Information-flow-based coupling
IHICP inheritance-based
coupling only
LCC Loose Class Cohesion [Bieman95]

Metric Description
TCC Tight Class Cohesion [Bieman95]
LCOM Lack of Cohesion in methods
LCOM1 Lack of cohesion in methods
[Chidamber91]
LCOM2 [Chidamber94]
LCOM3 number of disjoint set
of methods [Hitz95]
LCOM4 [Hitz95]
LCOMS5 Lack of Cohesion of Method
[Henderson-Selles96]
NewLCOMS A variation on LCOMS
LOC lines of Code
MLOC Lines of Code per Method
MOA Measure of Aggregation
MFA Measure of Functional Abstraction
MaCabe evaluate the complexity
of a program
maxCC Maximum Cyclomatic Complexity
MPC Message passing coupling
NFC Number of Function Call
NOF Number of Attributes
NOM Number of Methods
NORM Number of Overridden Methods
NSC Number of Daughters
NSF Number of Static Attributes
NSM Number of Static Methods
NST Number of Statments
NBD Nested Block Depth
NCR Number of Constant Refinements
NIM Number of Instance Method
NOC Number of Children
NMR Number of Method
NOA Number of ancestors
NPM Number of Public Methods
[Bansiya & Dave 2002]
NOV Number of Variables in a class
NIHICP counts invocations to classes
not related through inheritance
NPF Number of Public Fields
NOAP Number of Public Attributes
NOAM Number of Added Methods
NOOM Number of Overridden Methods
NO0O Number of Operations
NOAV Number of Accessed Variables
NLM Number of Local Methods
NPRM Number of Private Methods
NPROM Number of Protected Methods
NHD Normalized Hamming distance-based
NMA Number of methods added
NMI Number of methods inherited
NMO Number of methods overridden
NOD Number of descendants
NOP Number of parents
NA number of attributes in a class
NAIMP number of attributes in
in a class excluding inherited
NM number of methods in a class
NMIMP number of methods

implemented in a class




Evaluating Thresholds for Object-Oriented Software Metrics

Metric Description
NumPara sum of the number of
parameters of the methods implemented
OCAEC  [Briand et al.1997]
OCAIC [Briand et al.1997]
OCMEC  [Briand et al.1997]
OCMIC  [Briand et al.1997]
OMMEC [Briand et al.1997]
PAR Number of Parameters
PCC Same as OCC, except G
is a directed graph
Puf Public Factor
RMD Normalized Distance
RFC Response For a Class
RFP Response For Process
SNHD Scaled NHD
SLOC Source Line of Code
SIX Specialization Index
SP Static polymorphism in inheritance relations
SPA Static polymorphism in anscestors
SPD Static polymorphism in descendants
Stmts number of declaration
and executable statements
in the methods of a class
TNCt Total Number of Constants
TNR Total Number of Refinements
TNMR Total Number of Method
TNRC Total Number of Refined
TNRM Total Number of Refined Methods
TNG Total Number of Gateway
TNE Total Number of Events
VG Cynclomatic Number McCabe Complexity
WMC Weighted Methods by Class
Co Connectivity
NewCo: A variation on Co
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