
Assessing Program Comprehension Tools
with the Communicability Evaluation Method

DENIS PINHEIRO1, MARCELO MAIA2, RAQUEL PRATES1, ROBERTO BIGONHA1

1Departamento de Ciência da Computação
Universidade Federal de Minas Gerais

2Faculdade de Computação
Universidade Federal de Uberlândia

(denis,rprates,bigonha)@dcc.ufmg.br,marcmaia@facom.ufu.br

Abstract. Most program comprehension tools present information extracted from the source code in a
visual way. The user interface of a comprehension tool may support or hinder the strategy used by the
programmer. Furthermore, which and how information is presented to the programmer may influence
the effectiveness of the comprehension process. Within this context, this paper shows theassessment
of the user interface of selected program comprehension tools which support different comprehension
strategies. A communicability evaluation method is conducted with users executing typical comprehen-
sion tasks using SHriMP and Understand for Java c©. The communicability evaluation method captures
communicative breakdowns during the user-system interaction, i.e., it identifies difficulties experimented
by users in understanding the comprehension tool during the interaction. Our goal is to collect indica-
tors on the quality of user-system interaction based on relevant breakdowns that took place during the
evaluation. We show some findings that may help designing better tools.

Keywords: Program comprehension tools, user interfaces, communicability test.

(Received July 18, 2008 / Accepted September 18, 2008)

1 Introduction

Understanding an already built software system is nec-
essary because those systems are in permanent main-
tenance and evolution. Mayer and Vans (1995) point
out five basic tasks related to software maintenance and
evolution: system adaptation, perfective and corrective
maintenance, source code reuse and restructuring [15].
The program comprehension activity is necessary nearly
in all of the above tasks. Furthermore, large systems
and outdated documentation usually add to the com-
plexity of program comprehension task.

Several researches have been developed to minimize
this problem. Tools and theories are being developed to
better support the program comprehension task. Storey
[11] presents a study about theories and tools around

the program comprehension activities. The study also
presents several avaliable features of tools with a pro-
jection of several necessary features the tools should
have.

Program comprehension tools are designed accord-
ing to the several possible strategies used by a program-
mer while performing comprehension tasks. It is known
that comprehension tools can better support or even hin-
der the comprehension strategies used by developers
[14].

The functionalities supported by a tool, e.g., navi-
gation, queries and multiple views are commonly im-
plemented within a graphical user interface. It is well-
know in the human-computer interaction community
that the success or failure of an interactive system is de-

(denis,rprates,bigonha)@dcc.ufmg.br, marcmaia@facom.ufu.br
Raquel
Inserted Text
 <espaço>

Raquel
Inserted Text
two 

Raquel
Cross-Out



termined not only by the amount of delivered function-
ality, but also by how the designer chooses to present it
to the user at the interface.

This paper presents indicators on how the compre-
hension strategy chosen by the tool designer and its
presentation to users affect users’ experience with two
comprehension tools that support different strategies,
namely SHriMP [12] and Understand for Java [7]. Both
are visual tools with graphical user interfaces showing
diagrams and views built from Java source code anal-
ysis. However, SHriMP adopts an integrated compre-
hension strategy, whereas Understand for Java adopts
a bottom-up one. We have performed a communica-
bility evaluation with users interacting with both tools,
and collected indicators on the tasks better supported
by each tool, as well as on how the way these strate-
gies were presented to the users impacted their expe-
riences. The evaluation was done using the Commu-
nicability Evaluation Method [6], a qualitative method
that identifies user-system communicative breakdowns
during interaction.

The remaining of this paper is organized as follows.
Section 2 presents some background on program com-
prehension. Section 3 reviews the comprehension tools
that will be used in the experiments. Section 4 presents
the Communicability Evaluation Method used to appre-
ciate the quality of the selected tools’ interfaces. Sec-
tion 5 describes the experiment design and section 6
discusses the experiment results. Finally, the section
7 presents our final remarks.

2 Program comprehension

The program comprehension process requires the de-
veloper to produce mental models about the source code
organization (high-level abstractions), about how the
functionalities were implemented (low-level abstrac-
tions), about the implemented requirements, etc.

Understanding an already built software system is
necessary because those systems are in permanent main-
tenance and evolution. Mayrhauser and Vans [15] point
out five basic tasks related to software maintenance and
evolution: system adaptation, perfective and corrective
maintenance, source code reuse and restructuring. The
program comprehension activity is necessary nearly in
all of the above tasks.

2.1 Comprehension strategies

There are many ways to comprehend a program. Some
strategies guide the way a programmer proceed with
the comprehension process [14]. We review here some
strategies.

Top-down comprehension is a process to understand
by reconstruction the knowledge domain and mapping
it to the source code [1]. The process starts with a gen-
eral view of the system, which is successively refined.

Bottom-up comprehension is an understanding pro-
cess that starts from the source code, and successively,
software artifacts are grouped into higher-level abstrac-
tions. The process continues until a global view of the
system is obtained [8].

Systematic comprehension is a process to read the
code following the control and data flow. The as-needed
approaches focus on control and flow for specific parts
one intends to understand. These approaches seem to
be hard to work effectively on very large systems. On
the other hand, they may seem to be widely used for
focused parts of the system [4][10].

Knowledge-based comprehension is a process based
on the idea that the programmer can evolve the com-
prehension either with bottom-up or top-down strate-
gies. The programmer repeatedly asks a question, con-
jectures an answer and searches throughout the code to
validate or to reject that conjecture. During this inquiry
process the programmer gains incremental understand-
ing of the software [3].

Integrated comprehension is a process that combines
top-down, bottom-up and knowledge based approaches
into a single strategy. Comprehension tasks can be per-
formed freely at any abstraction level, and hence any
strategy can be used depending on the current level[15].

A programmer can understand an implementation
using any of these strategies, either manually or us-
ing some comprehension tool to facilitate the process.
However, there are some factors that may influence the
choice of the strategy: diversity of types of programs
being comprehended, specific aspects of a comprehen-
sion task and the programmers’ preferences. Experi-
enced programmers find it easy to determine which strat-
egy is better for specific programs and tasks. Indeed,
these factors explain the diversity of strategies. This
helps to explain why program comprehension tools are
difficult to design and why they may facilitate the strat-
egy choice or even impose an strategy not always useful
for the task at hand.

The next section describes the selected tools that
support code navigation for program understanding or
maintenance.

3 The Comprehension Tools

Software comprehension could be an easier task if pro-
grammers had up-to-date and high-quality documenta-
tion. Unfortunately, source code is, frequently, the only
source of reliable information that can help compre-

Raquel
Cross-Out



hension. In this situation, comprehension tools play
an important role in the comprehension process. Tools
may use graphical and textual representation to enhance
the comprehension activity. Facilities to enhance navi-
gability in the available information are generally also
provided. Many tools present relevant information us-
ing structural graphs where nodes represent program
entities and arcs represent relationship between these
entities. Tools also use diagrams to present informa-
tion about program dynamics, such as, control flow di-
agrams and method call graphs.

The tools SHriMP and Understand for Java are pre-
sented in the next sections.

3.1 SHriMP

SHriMP (Simple Hierarchical Multi-Perspective) [13]
adopts an integrated strategy, providing mechanisms to
browse and to explore complex information spaces. It
provides visualization of nested graphs to present hi-
erarchically structured information. It introduces the
concept of nested interchangeable views, that allows
users to explore information in multiple perspectives
and multiple abstraction levels. SHriMP may be use to
explore and to browse Java programs in the Eclipse IDE
using the Creole plug-in. It also may be used to visu-
alize ontologies in Protégé with the Jambalaya plug-in,
and used to visualize flow diagrams combined with the
IBM Websphere Studio Workbench [12]. In this paper
we use the Creole plug-in, shown in figure 1.

SHriMP has several functionalities organized in win-
dows encapsulated within tabbed panes. The main win-
dow shows the system architecture built with coloured
nodes and arcs. Nodes represent the program’s enti-
ties and can be expanded to show the nested entities or
collapsed to hide those entities. The arcs represent the
relationship between the entities, and they can encap-
sulate several relationship occurrences of the same type
between two entities. Nodes and arcs can be hidden or
visible, depending on the state of the Node Filter and
Arc Filter panes. Other visualization options and func-
tionalities are available in the quick view bar and in the
toolbar. Some visualization options are method call di-
agrams, dependency diagrams and class hierarchy dia-
grams. Some algorithms are available to organize the
diagrams. A search tool is available to query for some
specific entities in the program.

3.2 Understand for Java

Understand for Java c©1 [7] is a source code analyzer that
helps programmers understanding software projects writ-

1Commercial tool developed by Scientifc Toolworks, Inc.

ten in Java. The source code is analyzed and a reposi-
tory with structures and relationships extracted from the
code is created. The repository is used to produce con-
trol flow diagrams, method call graphs, inheritance hi-
erarchy, and used to provide navigation and queries on
source code. The strategy adopted is bottom-up. Figure
2 shows the main window of the tool.

The tool interface is divided in three main areas: fil-
ter area (upper-left), information area (lower-left), doc-
ument area (right). Filters enable the user to select,
based on the entities’ types, specific entities in the source
code. The presentation of the entities’ information also
includes location, metrics and relationships in the In-
formation Browser. In the document area, several win-
dows are presented, including either a specific diagram
or the source code. Diagrams and entities’ information
are presented after either selecting the entity name or di-
rectly in the diagrams or activating a right-click menu.
Control flow diagrams, method call diagrams, inheri-
tance hierarchy diagrams, relationship between entities
are presented using its own notation. Syntax highlight-
ing is used to facilitate source code visualization.

4 The Communicability Evaluation Method

The Communicability Evaluation Method [6] is a qua-
litative method for user interface evaluation, based on
Semiotic Engineering theory [6, 2, 5]. The Semiotic
Engineering perceives the system’s interface as a
designer-to-user communication. In this message the
designer conveys to users who the system is meant to,
what problems it can solve and how to solve them [2].
Communicability is a distinctive quality of interactive
systems that communicate efficiently and effectively to
users their underlying design intent and interactive prin-
ciples.

The Communicability Evaluation Method involves
users, who perform specific predetermined tasks in a
controlled environment, such as a user testing lab. Users
receive scenarios describing the tasks to be executed
with the system being evaluated. The tasks are executed
one at a time and recorded using a screen capture soft-
ware for further analysis. During the test, evaluators
instruct users, observe and take notes on users behav-
ior or comments that may strike them as relevant, but
they do not interfere with task execution. At the end,
an interview with the user may be carried out in order
to better understand some of the actions and commu-
nicative breakdowns that may have occurred, and also
to collect data on user experience and satisfaction [6].
The data analysis is comprised of 3 steps:

1. Tagging. Evaluator plays back the user interaction

Raquel
Cross-Out

Raquel
Inserted Text
used

Raquel
Cross-Out

Raquel
Cross-Out

Raquel
Inserted Text
In this communicative act

Raquel
Inserted Text
As users interact with the system, they understand the message being sent. 

Raquel
Cross-Out


Raquel
Inserted Text
In this theoretical framework, the quality of the system is related to how this message is transmitted to users. Thus, Semiotic Engineering has defined communicability [6] as a distinctive



Figure 1: Creole window (SHriMP plug-in for Eclipse).

Figure 2: Understand for Java window.



and identifies communicative breakdowns, repre-
sented by specific interaction patterns. The evalua-
tor then associates an utterance to this breakdown,
as if "putting words in the user´s mouth". For in-
stance, if the user stops the cursor over an interface
element trying to see the hint associated to it the
evaluator would tag it with the utterance What´s
this? or if the user was browsing the menus look-
ing for a specific option it would be tagged with
a Where is it? . The other utterances the com-
prise the predefined set are: What now? , Oops! ,
Where am I? , I can’t do it this way., Why
doesn’t it? , What happened? , Looks fine to me.,
I give up! , I can do otherwise., Thanks, but no,
thanks., Help! .

2. Interpretation. In this step, the evaluator tabu-
lates the problems identified by the break downs.
During the interpretation process, the evaluator
should consider 4 factors: (1) classification of the
utterances according to the type of communicative
failure they represent in the system-user commu-
nication; (2) the frequency and context of occur-
rence of each type of utterance; (3) the existence
of patterned sequences of utterance types; and (4)
the level of goal related problems signaled by the
occurrence of utterance types. This step depends
on the evaluator’s experience with the method
and knowledge of Semiotic Engineering.

3. Semiotic profiling. The evaluator reconstructs the
overall designer to user message. Our analysis fo-
cuses on the tagging step and their impact to the
users experience. The complete interpretation and
semiotic profiling are not discussed.

5 Experiment

The experiment was conducted with four users, each
of them using both tools. The goals of the experiment
were: (1) collect information on the impact of the
comprehension strategy used by the system and
that requested by the task; (2) identify communicability
problems in the selected tools that could hinder program
comprehension; and (3) based on (1) and (2) identify
some relevant aspects of the interface designers should
consider carefully during the project of a program com-
prehension system.

Participants were chosen through a pre-test applied
to graduate students from the Computer Science Grad-
uate Program at UFMG, who volunteered to participate
in the study. Two of the four selected participants had
intermediate knowledge of Java and the other two had
advanced knowledge of Java. They all had familiarity

with the Eclipse development environment and none of
them had interacted with the selected comprehension
tools before.

5.1 Experiment Organization

One of the factors that influenced the choice of the com-
prehension tools was the different comprehension strate-
gies they adopted. SHriMP adopts an integrated com-
prehension strategy, and the way the visualization is or-
ganized emphasizes top-down comprehension. Under-
stand for Java c© (UJ) adopts a bottom-up comprehen-
sion strategy. A communicability test was conducted
with the 4 participants performing 6 typical program
comprehension tasks. The tasks were divided into two
groups: 3 tasks that needed to analyze high-level ab-
stractions (e.g. models and diagrams) and 3 tasks that
needed to analyze low-level abstractions (e.g. source
code, flow control, method calls). Each partcipant used
both tools, performing 3 tasks of the first group with
one tool and other 3 tasks of the second group with the
other tool. The table below shows how tasks (T), par-
ticipants (P) and tools were divided. Tasks 1 to 6 were
performed in that order.

Higher-level tasks Lower-level tasks
T1 T2 T3 T4 T5 T6

P1 (intermed.) SHriMP UJ
P2 (advanced) SHriMP UJ
P3 (intermed.) UJ SHriMP
P4 (advanced) UJ SHriMP

The reason for this choice was to enable the iden-
tification and comparison of strong and weak points of
each tool.

During the test, each participant´s session lasted ap-
proximately an hour and a half where each participant
was instructed about test’s goals, had a brief training on
the tools, received the material for the test, performed
the tasks and participated in a post-test interview.

5.2 Participant Instructions

The first phase of the experiment was an explanation to
the participants about all phases of the evaluation. Ini-
tially, participants were advised that the only purpose of
the test was to evaluate the effectiveness of the selected
tools in the program comprehension process. The par-
ticipants were given an overall explanation about the
functionalities of the selected tools. They were aware
their interaction was being recorded, using a screen cap-
ture software and gave permission for it to be done.
They were also informed their identities would remain

Raquel
Inserted Text
 utterance

Raquel
Cross-Out

Raquel
Inserted Text
that 

Raquel
Cross-Out

Raquel
Cross-Out

Raquel
Inserted Text
breakdowns (uma palavra só)

Raquel
Cross-Out

Raquel
Inserted Text
The semiotic profiling is the last step in the Communicability Evaluation Method. In this step the evaluator produces an in-depth characterization of the designer-to-user metacommunication.To do so, he spells out the designer´s message and present problems that have been identified.<Novo parágrafo.>The work presented in this paper has focused on the tagging step of the analysis. It discusses how the communicative breakdowns identified may impact the users´ experience and the indicators they generate for each of the tools. The complete semiotic profiling of each tool is not discussed.

Raquel
Cross-Out

Raquel
Cross-Out

Raquel
Inserted Text
required an analysis of 

Raquel
Cross-Out

Raquel
Inserted Text
focused on 

Raquel
Highlight
Acho melhor colocar como parte do último parágrafo.

Raquel
Note
Falta número e legenda da tabela.

Raquel
Highlight
Referenciar número da tabela.

Raquel
Cross-Out

Raquel
Inserted Text
goals of the test, how tests would be conducted, 

Raquel
Cross-Out

Raquel
Inserted Text
part

Raquel
Cross-Out

Raquel
Inserted Text
to explain

Raquel
Cross-Out

Raquel
Cross-Out

Raquel
Inserted Text
the steps 

Raquel
Inserted Text
 and that they could interrupt their participation in the test at any moment, if they wished to.

Raquel
Cross-Out

Raquel
Inserted Text
informed that

Raquel
Cross-Out



anonymous and they could had access to the data col-
lected during their tests at any time.

5.3 Training

Before conducting the test itself, the basic functionali-
ties of the selected tools were quickly demonstrated to
the participants. This demonstration aimed to level the
knowledge about the tools of all participants and to min-
imize the initial interaction problems (previously ob-
served in another pilot test). So, the participants could
concentrate specifically in performing the comprehen-
sion tasks.

The demonstration took place through the visual-
ization of a small Java program implementing a bank-
ing application. The program has 5 files containing 5
classes and 165 lines of code. During the visualization,
the main functionalities of each tool were presented to
the participants.

5.4 Tasks

The tasks executed by the participants during the test
were typical tasks of program comprehension. A typi-
cal scenario of software maintenance requiring a com-
prehension phase was presented to all participants:

You are a Java developer. You were recently
hired by a software company to maintain a sys-
tem already developed by another person no longer
in the company. The referred program is the Bat-
tleship game. Before beginning the maintenance
you need to understand the program. As you know
you have a short time, you should decide to search
for and test some program comprehension tools to
facilitate your comprehension process. You find
two tools: Creole (SHriMP plug-in for Eclipse -
freeware) and Understand for Java c© (a commer-
cial tool developed by Scientific Toolworks, Inc. -
evaluation version). In order to evaluate the tools,
you will perform some comprehension tasks. At
the end of the evaluation, you hope to have a bet-
ter comprehension of the system, and you are ex-
pected to be ready to maintain the system as re-
quested by your boss.

The participants performed the comprehension tasks
with a Battleship game program, implemented in Java.
There are 15 classes implemented in 625 lines of code,
organized in 3 packages (grid, uinterface and util ). None
of the participants had any knowledge about the imple-
mentation. Task execution was recorded and an eval-
uator was present and took notes. Each participant’s
session lasted approximately an hour and a half.

The choice of the 6 tasks followed the ideas pro-
posed in [9], where a benchmark of typical tasks during

program maintenance was suggested. The chosen tasks
were to answer the following questions:

1) Navigate the views created from source code by
the tool and try to get an overall architecture of the
program. Draw a diagram constituted of intercon-
nected blocks that represents the concrete architec-
ture.

2) In which blocks of the previous diagram, where
were the rules of the game implemented?

3) In the implemented Battleship game, is the mode
“one user against the computer" available?

4) What is the size of the grid that defines the “Sea”
of the game? Is the size of the grid fixed or can it
be redefined before starting the game? If the size
is fixed, how can the implementation be changed
to support the redefinition before the game starts,
and vice-versa, if the grid is not fixed?

5) How many ships can be located in the grid (Sea)?
If we want to add another kind of ship, which changes
need to be made to the program and where?

6) What is your evaluation about the program struc-
ture? Do you consider the Battleship game pro-
gram was well-designed?

The first three tasks required the participants to get
an overall view of the program, but the third task, also
required source code inspection. The last three tasks
required a lower-level view of the program, that is, re-
quired visualizing the source code.

There were tasks that required understanding of how
to change the program, for example, how new kinds of
ships could be added to the program. However, the par-
ticipants did not perform the changes, they only listed
the necessary steps to implement the new requirement.

5.5 Post-test

At the end of the experiment, the participants were in-
terviewed to provide their own views on the tools: eas-
iness of use, satisfaction with interface layout, and in-
formation absorption. The goal of the interview was
to complement some issues observed by the evaluator
during the task execution. Participants were also asked
about their interest in the tools, and to verify whether
they would use or suggest the tools in some situation.
And finally, questions to verify if they believed the tools
met their goals.

Raquel
Cross-Out

Raquel
Inserted Text
at giving an initial knowledge about the tools and minimize some problems observed during pilot tests that were not the focus of the experiment (e.g. identifying the interface element that <COMPLETAR COM O EXEMPLO - NÃO ME LEMBRO BEM> ).

Raquel
Cross-Out

Raquel
Inserted Text
By doing so, 

Raquel
Cross-Out


Raquel
Cross-Out

Raquel
Inserted Text
that required a

Raquel
Cross-Out

Raquel
Inserted Text
step

Raquel
Cross-Out

Raquel
Inserted Text
Since you have learned you only have a

Raquel
Inserted Text
 allocated to this task

Raquel
Cross-Out

Raquel
Inserted Text
have decided to

Raquel
Cross-Out

Raquel
Inserted Text
have found 

Raquel
Cross-Out

Raquel
Note
Já falou isso no início da apresentação do teste, não precisa repetir.

Raquel
Cross-Out

Raquel
Inserted Text
The 6 tasks proposed in the test were defined to represent typical program maintenance tasks [9].

Raquel
Cross-Out

Raquel
Cross-Out

Raquel
Cross-Out

Raquel
Inserted Text
required users to answer

Raquel
Cross-Out

Raquel
Inserted Text
view of the system´s architecture.

Raquel
Cross-Out

Raquel
Cross-Out

Raquel
Inserted Text
this

Raquel
Cross-Out

Raquel
Inserted Text
 depicted<depicted quer dizer representadas.>

Raquel
Cross-Out

Raquel
Inserted Text
in

Raquel
Cross-Out

Raquel
Cross-Out

Raquel
Inserted Text
H

Raquel
Cross-Out

Raquel
Note
Se a mesma pergunta é feita para as 2 situações possíveis - basta apresentá-la não precisa dizer para um caso ou outro.

Raquel
Cross-Out

Raquel
Inserted Text
a well-designed program

Raquel
Inserted Text
a 

Raquel
Inserted Text
 Notice that in the tasks that involved change in the program, users were not requested to preform them, but to describe how they would go about to implementing them.

Raquel
Cross-Out

Raquel
Cross-Out

Raquel
Inserted Text
the tools 

Raquel
Cross-Out

Raquel
Inserted Text
their use

Raquel
Cross-Out

Raquel
Inserted Text
any specific

Raquel
Inserted Text
s

Raquel
Cross-Out

Raquel
Inserted Text
they were asked whether

Raquel
Cross-Out


Raquel
Inserted Text
about their experience. The goal of the interview was twofold. It aimed at allowing the evaluator to understand some actions observed during the test, as well as learning about the users views on the tools (i.e. easiness of use, satisfaction with the interface, and information absortion).<Melhor colocar assim, senão fica meio sem sentido fazer uma avaliação de comunicabilidade e depois na entrevista focar em critérios específicos de usabilidade.>



5.6 Developed Material

Two documents were written to guide the test execu-
tion. The first document, delivered to each participant,
contained a description of the evaluation goal, a short
description of the tools, the execution scenario and the
tasks. The other document, for the evaluator, contained
all the experiment script, with all the steps the evaluator
should follow to conduct the experiment as predefined,
as well, all questions to be asked during the interview.

6 Results

The first step of the analysis intended to identify strate-
gies adopted by users at each task, next the Commu-
nicability Evaluation Method tagging was performed.
All participants completed all tasks but with some vari-
ation on the detail level of the answers. Advanced users
were more objective in their answers, as opposed to in-
termediate users who tried to better explain their an-
swers. Each participant’s comprehension strategy was
identified observing the records. The participants used
a bottom-up strategy with Understand for Jjava because
it was the only one supported. They browsed the code
and selected diagrams related to the entities in the visu-
alized code.

Although SHriMP supports an integrated compre-
hension strategy, participants adopted a top-down strat-
egy. They kept navigating throughout the diagrams to
find and verify relationships. Even when they needed
to visualize the code, they navigated throughout the di-
agrams until they could locate points they could explore
in the source code, and only then did they visualize the
code. It is possible that this choice of strategy was mo-
tivated by the initial diagram presenting the overall ar-
chitecture of the program, from which the participants
started the exploration of other diagrams.

During the tagging step users interactions were as-
sociated to utterances. Figure 3 shows the tags dis-
tributed along the timeline for each participant perform-
ing each task.

Notice that three tags occurred much more often
than others, mainly Where is it? , What’s this? and
Oops! . The Where is it? tag could be observed fre-
quently at the beginning of a task execution. This break-
down occurred when users navigated throughout the sev-
eral views provided by the system looking for the nec-
essary information about the Battleship program to per-
form the task. It is interesting to notice that although
users were not looking for a function in the interface
(usual interaction pattern associated with Where is it?
tag) they were trying to identify which view would pro-
vide the desired information about the code. The occur-

rence of Where is it? breakdowns are expected when
first interacting with a system. However, the fact that
its frequency did not decline in time, as users learned
the comprehension tool being used, as well as the Bat-
tleship program, may indicate a lack of clarity in the in-
terface when expressing the information extracted from
the source code to the user.

The What’s this? tags occurred, mainly when us-
ing SHriMP. However, there were 2 different situations
that led to that tag. The first was the original one, that
is, when the user stops the cursor over an interface ele-
ment and waits for the explanation available at the hint.
This utterance occurred mainly in the interaction with
the SHriMP interface, in the begining of the Task 1 ex-
ecuted by the Participants 1 and 2, and during the ex-
ecution of the Task 4 and Task 5 by the Participants 3
and 4.

The second situation of the What’s this? tags rep-
resented the same interaction pattern, but with different
purposes. In SHriMP the abstract views would present
detailed information by use of the hint. For instance, in
the view that showed the dependency between entities,
once the cursor was put on the arc that represented the
dependency, dependency details about which specific
method depended on which other one was shown. In
this case users understood how to interact with the sys-
tem and what the underlying intent was and were able
to use the system successfully. Thus, the request for de-
tailed information should not be considered a commu-
nicative breakdown. This interaction pattern occured
mainly in the ongoing execution of the Tasks 1 and 2
by the Participant 1 and during execution of the Tasks 2
and 3 by the Participant 2, when it was requested to the
participant a high level information about the program
implementation.

Another frequent communication breakdown was
identified with the utterance Oops!. It was mainly iden-
tified when the user opened up a view, either a diagram
or the source code, and rapidly identified that there was
no useful information for its task on that view, and then
he went back to the previous view. This breakdown was
more frequent when using Understand for Java, when
the user frequently was tempted to open a view expect-
ing something useful, and he realized that either the di-
agram or the source code was not related with the task
at hand. The less frequent is this breakdown, the more
directly users get desired information. There was a user
that commented that the Information Browser of Un-
derstand for Java, that presents textual information (e.g.
metrics, declarations, uses, dependencies, etc.) about
the entities was the only really useful functionality in
that tool.

Raquel
Highlight
Acho que não precisa disso. Se for colocar esta seção deve acrescentar o termo de consentimento, aproveite e cite a lei brasileira que requer que seja apresentado.

Raquel
Cross-Out

Raquel
Inserted Text
answers´ detail level.

Raquel
Cross-Out

Raquel
Inserted Text
by observing their interaction with each tool.

Raquel
Cross-Out

Raquel
Cross-Out

Raquel
Inserted Text
code view.

Raquel
Cross-Out

Raquel
Inserted Text
navigated

Raquel
Cross-Out

Raquel
Inserted Text
communicative breakdowns 

Raquel
Cross-Out

Raquel
Cross-Out

Raquel
Cross-Out

Raquel
Inserted Text
(who used SHriMP last).

Raquel
Inserted Text
 (who used SHriMP first)

Raquel
Cross-Out

Raquel
Inserted Text
often 

Raquel
Cross-Out

Raquel
Inserted Text
then

Raquel
Cross-Out

Raquel
Inserted Text
o

Raquel
Inserted Text
the 

Raquel
Inserted Text
 piece of 



Figure 3: Tagging results

Communication breakdowns, such as, What hap-
pened?, Why doesn’t it? and I can’t do it this way
happened when the users did not understand or did not
realized how a functionality actually worked. Since,
they happened with very little frequency and they did
not point to any conclusive indicators. These break-
downs are very important to be analyzed because if they
were more frequent, the program comprehension would
be severely hindered caused by the focus of the user
possibly moving from the comprehension task to the in-
teraction with the tool.

It is interesting to notice a communicative break-
down identified during one of the tests. In SHriMP,
the visualization of the source code is limited to a small
window. Most users complained about this feature. The

utterance Thanks, but no, thanks! occurred when the
participant 3 was executing task 5. This participant
needed to navigate throughout the source code to un-
derstand specific details of the implementation, but he
refused to use the SHriMP visualization option and de-
cided to visualize the code directly with the Eclipse
editor. Even though it occurred only once, it is rele-
vant because users are declining a visualization offered
by the designer, and one of the main features of com-
prehension tools are the visualizations they provide the
user with. This operational breakdown, could lead to a
strategic breakdown leading the user to decline the sys-
tem as a whole.

Based on these observations we can discuss some
features of the evaluated tools:

Raquel
Cross-Out

Raquel
Cross-Out

Raquel
Cross-Out


Raquel
Inserted Text
 probably indicating a shift of the users´ focus from the comprehension task to the interaction with the tool.



• SHriMP has shown to have an effective schematic
visualization of the program architecture (top-down),
nonetheless, it has shown deficiencies to provide a
better view of the source code.

• Understand for Java is a complementary to SHriMP.
It provides effective views of the source code, but
does not provide good overall views of the system.

Analyzing the results of the interview, it could be
noticed that users considered both tools easy to use.
However, they pointed out that the dependencies view
of both presented interaction difficulties. SHriMP rep-
resented all the relationships in this view with arcs. It
resulted in an overwhelming amount of information to
users. Understand for Java on the other hand, presents
each kind of relationship on a different window, making
it necessary for users to manage several windows. Most
participants believe that the dependencies view is cru-
cial for the effectiveness of a program comprehension
tool.

The interviews also showed that participants had a
better experience with SHriMP diagrams because they
resemble UML diagrams, and the icons representing the
entities followed the Eclipse standard. Although, the di-
agrams of Understand for Java were considered easy to
understand, users pointed out that they felt it was easier
to understand the information by using SHriMP. They
believed the main reason for that was the use of stan-
dard known notation.

7 Final Remarks

This paper presented an evaluation of the user interface
of two comprehension tools: SHriMP and Understand
for Java. The user interfaces were evaluated using the
Communicability Evaluation Method. Being a quali-
tative method, the goal was not to obtain statistically
valid results, but rather indicators of relevant problems
related to the interactive program comprehension sys-
tems.

In order to collect information on the impact of the
comprehension strategy, the experiment was planned to
include tasks that were favored by system strategy (i.e.
abstract tasks favored by top-down strategy), as well
as tasks that might be hindered by the strategy (i.e get
low level code information by use of a top-down strat-
egy). The study showed that the strategy adopted by
users was mainly imposed by the tool, and less influ-
enced by the task. In Understand for Java the abstract
levels offered by the system were not enough to pro-
vide the user with the information needed by the high
level abstraction tasks. Users had to create the abstrac-
tions based on existing views that favored a bottom-up

strategy. SHriMP took an integrated perspective, but
favored a top-down approach. When users performed
the low level tasks that required a detailed view of the
code, they used a top-down strategy to find and access
it. This result corroborates the findings presented by
[14] and points to the need to better understand the fac-
tors that influence program comprehension systems ef-
fectiveness.

In that direction, indicators show that it may be in-
teresting for tools to support a quick understanding of
the overall architecture of the system, as well as a good
visualization of the source code. In other words, pro-
vide both top-down and bottom-up strategies that al-
lowed users to decide on and adopt the best one for the
task at hand. The participants also pointed out that one
of the most important features for program comprehen-
sion tools is the visualization of system dependencies,
since it often is a bottleneck in the comprehension pro-
cess.

The analysis of the experiment showed that most
of the communicative breakdowns were related to find-
ing the desired information in one of the many possible
views. It would be interesting to conduct a study of
the use of these systems during a longer period of time
to see whether these breakdowns would decrease and
users would be able to understand what was depicted
in the different views or if they would end up declin-
ing some of the views and using a subset of them. A
study in a longer period of time would also allow for
an observation whether other breakdowns that had only
a few occurrences in this study would increase. In re-
gard to the views that offered a more detailed level of
information on demand, it would be interesting to in-
vestigate how well they supported users in navigating
through different levels of abstraction.

References

[1] Brooks, R. E. Towards a theory of the comprehen-
sion of computer programs. International Journal
of Man-Machine Studies, 18(6):543–554, 1983.

[2] de Souza, C. S. The semiotic engineering of
human-computer interaction. The MIT Press,
Cambridge, MA, 2005.

[3] Letovsky, S. Cognitive processes in program com-
prehension. In Papers presented at the first work-
shop on empirical studies of programmers on Em-
pirical studies of programmers, pages 58–79, Nor-
wood, NJ, USA, 1986. Ablex Publishing Corp.

[4] Littman, D. C., Pinto, J., Letovsky, S., and
Soloway, E. Mental models and software main-



tenance. In Papers presented at the first workshop
on empirical studies of programmers on Empirical
studies of programmers, pages 80–98, Norwood,
NJ, USA, 1986. Ablex Publishing Corp.

[5] Prates, R. O. and Barbosa, S. D. J. Introdução
à teoria e prática da interação humano computa-
dor fundamentada na engenharia semiótica. In
T.Kowaltowski e K. K. Breitman (Org.), Jornada
de Atualização em Informática do Congresso da
Sociedade Brasileira de Computação, pages 263–
326, Rio de Janeiro, Brazil, Julho, 2007. SBC
2007.

[6] Prates, R. O., de Souza, C. S., and Barbosa, S. D.
A method for evaluating the communicability of
user interfaces. ACM Interactions, 7(1):31–38,
2000.

[7] scitools.com. Java editor with reverse engineer-
ing, code navigation and automatic documenta-
tion. Scientific Toolworks Inc. http://www.
scitools.com/uj.html.

[8] Shneiderman, B. and Mayer, R. Syntac-
tic/semantic interactions of programming be-
haviour: A model. International Journal of Com-
puter and Information Sciences, 8(3):219–238,
1979.

[9] Sim, S. E. A Theory of Benchmarking with Ap-
plications to Software Reverse Engineering. PhD
thesis, Department of Computer Science. Univer-
sity of Toronto, Toronto, Canada, October 2003.

[10] Soloway, E. and Ehrlich, K. Empirical studies of
programming knowledge. Readings in artificial
intelligence and software engineering, pages 507–
521, 1986.

[11] Storey, M.-A. Theories, methods and tools in
program comprehension: Past, present and fu-
ture. In IWPC ’05: Proceedings of the 13th Inter-
national Workshop on Program Comprehension,
pages 181–191, Washington, DC, USA, 2005.
IEEE Computer Society.

[12] Storey, M.-A., Best, C., Michaud, J., Rayside, D.,
Litoiu, M., and Musen, M. SHriMP views: an
interactive environment for information visualiza-
tion and navigation. In CHI ’02: CHI ’02 extended
abstracts on Human factors in computing systems,
pages 520–521, New York, NY, USA, 2002. ACM
Press.

[13] Storey, M.-A. D. and Müller, H. Manipulating and
documenting software structures using SHriMP
views. In Proc. of the International Conference
on Software Maintenance (ICSM ’95), pages 275–
284, Oct. 1995.

[14] Storey, M.-A. D., Wong, K., and Müller, H. A.
How do program understanding tools affect how
programmers understand programs? Sci. Comput.
Program., 36(2-3):183–207, 2000.

[15] von Mayrhauser, A. and Vans, A. M. Program
comprehension during software maintenance and
evolution. Computer, 28(8):44–55, 1995.

http://www.scitools.com/uj.html
http://www.scitools.com/uj.html

	Introduction
	Program comprehension
	Comprehension strategies

	The Comprehension Tools
	SHriMP
	Understand for Java

	The Communicability Evaluation Method
	Experiment
	Experiment Organization
	Participant Instructions
	Training
	Tasks
	Post-test
	Developed Material

	Results
	Final Remarks

