
kristian@ufmg.br
August 2005

An Infrastructure for
Implementing Compilers for
Concurrent Abstract State

Machine Languages
Kristian Magnani

Mariza A. S. Bigonha
Roberto S. Bigonha
Fabíola F. Oliveira
Vladimir O. Di Iorio

Introduction

l Abstract State Machines (ASM)
l  formal semantic method created by Yuri

Gurevich
l provide operational semantics for algorithms
l used in:

l Semantics of programming languages
l Distributed systems
l Architectures (hardware and software)
l etc

Introduction

This work:
l describes a new model for specifying

concurrent systems based on ASM
l proposes an infrastructure, called MIR, to

implement ASM-like languages

Abstract State Machines (ASM)

l Machines whose states are algebraic
structures, represented by functions

l Basic transition rules:
l  function update
l conditional constructor
l block constructor (parallel execution)

l Runs:
l sequences of states
l next state generated by the application of the

transition rule over the previous state

Abstract State Machines (ASM)

Example:

State:

lin(RED) = 2
col(RED) = 3
lin(BLUE) = 3
col(BLUE) = 2

Abstract State Machines (ASM)

lin(RED) = 2
col(RED) = 3
lin(BLUE) = 3
col(BLUE) = 2

Transition rule:

if col(RED) > 1 then
 col(RED) := col(RED) – 1
end

Abstract State Machines (ASM)

lin(RED) = 2
col(RED) = 3
lin(BLUE) = 3
col(BLUE) = 2

if col(RED) > 1 then
 col(RED) := col(RED) – 1
end

Run: …

Abstract State Machines (ASM)

lin(RED) = 2
col(RED) = 2
lin(BLUE) = 3
col(BLUE) = 2

if col(RED) > 1 then
 col(RED) := col(RED) – 1
end

Run:
 Step 1 …

Abstract State Machines (ASM)

lin(RED) = 2
col(RED) = 1
lin(BLUE) = 3
col(BLUE) = 2

if col(RED) > 1 then
 col(RED) := col(RED) – 1
end

Run:
 Step 1

 Step 2 …

Abstract State Machines (ASM)

lin(RED) = 2
col(RED) = 1
lin(BLUE) = 3
col(BLUE) = 2

if col(RED) > 1 then
 col(RED) := col(RED) – 1
end

Run:
 Step 1

 Step 2

 Step 3 …

Abstract State Machines (ASM)

l Advantages:
l Precision
l Simplicity
l Executability
l Scalability
l Generality

MIR

l  Infrastructure for ASM implementation
l  Implements a concurrency model based

on Lamport's concept of delayed
knowledge

l Designed to allow optimizations to be
performed over ASM specifications

The MIR Architecture

l Motivation:
l general infrastructure used as the basis of

compilers aiming at different ASM oriented
languages;

Agents, Modules and Other
Elements

l  A MIR specification:
l  a set of agents, each of them of a given type
l  a common Global Name Space, which is accessible

by each agent.

The MIR Approach for Concurrency

l An agent of MIR :
l Autonomy: there is a transition rule associated with

each agent, giving it an autonomous and independent
behaviour from other agents;

l Situatedness: every agent is immersed in a
common global context where they can interact
among each other, which are referenced by their
names or by the special word self;

l Proactivity: an agent has the freedom to call actions
over other agents.

The MIR Approach for Concurrency

l Delayed knowledge (Lamport):
l agents may store copies of the global state

which may not always be kept up to date.
l Systems with agents of different speed of

execution
l Unpredictable delay between the moment

some changes are performed by one
agent and the moment when these
changes are perceived by another agent

The MIR Approach for Concurrency

lin(RED) = 2
col(RED) = 3
lin(BLUE) = 3
col(BLUE) = 2

Rule for RED:
if isFree (lin(self)+1,
 col(self)) then
 lin(self) := lin(self)+1
end

Rule for BLUE:
if isFree (lin(self),
 col(self)+1) then
 col(self) := col(self)+1
End

The MIR Approach for Concurrency

lin(RED) = 3
col(RED) = 3
lin(BLUE) = 3
col(BLUE) = 3

Rule for RED:
if isFree (lin(self)+1,
 col(self)) then
 lin(self) := lin(self)+1
end

Rule for BLUE:
if isFree (lin(self),
 col(self)+1) then
 col(self) := col(self)+1
End

The MIR Approach for Concurrency

l The proposed model does not provide any
primitive for synchronization between
agents

l All communication must be explicitly
programmed by the designer of an ASM
concurrent specification

l The workbench may provide a library with
primitives for synchronization (written in
ASM itself)

Highlights of MIR Implementation

l  Serialization: The MIR
representation of an
ASM specification can
be saved in persistent
store as a XML file

l  Compilation: It can be
compiled into C++
Code

l  Direct Execution: MIR
can be also interpreted

Highlights of MIR Implementation

l Visualization: It is
also possible to
obtain a visual
representation of a
MIR specification
through the
generation of its
description in the
DOT language of the
GraphViz software.

MIR and Optimization

l There are some optimization opportunities
that are particular to the ASM model, and
therefore they are not performed by the
existing C++ compilers

l  In order to address this special situation, it
is under development a framework that
provides the proper environment to plugin
specific MIR optimizations

Conclusions

l Contributions of the proposed
infrastructure:
l  It can be used to implement a whole family of

languages targeting the ASM model
l A new approach for concurrent ASM, which

can be used to precisely describe distributed
algorithms in ASM

l optimizations can be plugged in, allowing
enhancements of the generated code

