
Lua Chords

April 27, 2011

Abstract

Concurrency is a fundamental trend in modern programming. Lan-

guages should provide mechanisms for programmers to write correct and

predictable programs that can take advantage of the computational power

of current architectures. Chords is a high level synchronization construc-

tion adequate for multithreaded environments. This work studies chords

through the implementation of a chords library in Lua.

1 Introduction

Concurrency is a fundamental trend in modern computer programming. How-
ever, multithreaded programming, the de-facto standard model for concurrent
programming, is known to be hard and error-prone [8]. The di�culty to write
correct multithreaded programs comes from the combination of resource shar-
ing in shared memory environments with mutable state, with the preemptive
scheduling of threads. Since the programmer is not able to control the sequence
of interleavings nor the moment the threads are preempted, there will be a very
large range of di�erent ways in which the threads can run, each one produc-
ing potentially di�erent results due to the interference with the execution of the
other threads. To produce predictable results under that scenario, programmers
need to resort to synchronization mechanisms in order to prune the spectrum
of possible execution histories to the desired ones.

There are various approaches to cope with concurrency so as to produce
correct programs. One of them consists basically in avoiding using threads
directly. Instead, new programming models, deterministic and reliable, can be
built above threads. In this direction, new concurrency abstractions have been
proposed for multithreading-based languages. One of those mechanisms is called
Chords, introduced in Polyphonic C# [1].

A chord is a synchronization construct that allows coordinating events. A
chord associates the execution of a function (the chord body) with the invoca-
tion of a set of messages speci�ed in the chord header: after those messages are
invoked, the chord is enabled and the body is �red (executed). Those messages
can be synchronous or asynchronous. Asynchronous methods return immedi-
ately, while synchronous methods block until all header methods are called.

That is, if a chord is described as:

sync send ( [ a r g s ] ) & ready ( [ a r g s ] ) { func ( [ params ] ) }

it is expected that after send and ready are invoked, the function func will exe-
cute in the thread where the call to send was issued (the synchronous method).

1



The e�ect is tantamount to the creation of a (one-shot) continuation on the
execution of the synchronous method that is executed on the space of the syn-
chronous process when the chord is enabled.

The work described in this paper has been developed using the Lua lan-
guage [6]. Despite its many advantages, the cooperative multithreading sup-
ported by Lua is not suitable for execution in multicored environments. We
look for models to take advantage of these environments while enabling to write
correct programs. Chords are an object oriented version of the join patterns
from the join-calculus process calculus [3]. They are closely related with Petri
Nets [12, 14] and constraint programming [16]. Besides Polyphonic C# and its
successors Cω [1], MC# [5] and Parallel C# [4], there are also Java implementa-
tions of chords, based either in the modi�cation of the JVM (Join Java [7]) or in
source-to-source transformation (JChords [17]). Other chord implementations
are present in VODKA [14], Concurrent Basic [15], the boost-join library [9]
and JErlang [13].

The advantages of Chords include:

(i) allowing to state explicitly the rules of synchronization,

(ii) implicit synchronization control by means of enforcing the stated synchro-
nization rules and

(iii) abstraction: hiding from the programmer the details of implementing lock-
ing, suspension and restart of the computations involved. The creation of
the threads is also abstracted from the programmer: a new thread is cre-
ated when a chord is enabled, given that all its methods are asynchronous.

(iv) composable,

(v) avoiding deadlock, as discussed in 2.2.1,

(vi) adequate for local and distributed settings. Chords permit to synchronise
methods that can be invoked either on the local machine or from another
host through remote method calls.

That makes Chords an attractive construction for local concurrency and also
distributed computing. However, the particularities of programming using a
message-passing style, along with the performance costs involved in the runtime
operation, still hinder their success.

In this paper we describe LChords [11], a library to provide an infrastructure
for chord-based programming in Lua. The contributions of this work include:

• A description of an implementation of a chord library in Lua to study the
advantages of this model and its feasibility;

• a proposal for separating basic mechanisms from customizable user poli-
cies.

2 Lua chords

The advantages of using chords as the concurrency mechanism during the design
of a language include better integration, extended syntax and the ability to de-
tect syntax errors at compile time. However, building a library allows for faster

2



prototyping while conducting our study, thus we have chosen to build a chords
library instead of creating a new language. To that end, we have developed an
implementation of a chords library in Lua we have named LChords [11]. This
section provides an introduction to Lua. Then we present the LChords library.

2.1 Brief introduction to Lua

Lua [6] is an interpreted, procedural and dynamically-typed programming lan-
guage. It is based on prototypes and features garbage collection. Tables are the
language single data structuring mechanism and implement associative arrays,
indexed by any value of the language except nil.

Closures and coroutines are �rst-class values in Lua. Lua coroutines are lines
of execution with their own stack and instruction pointer, sharing global data
with other coroutines. In contrast to traditional threads (for instance, Posix
threads), coroutines are collaborative: a running coroutine suspends execution
only when it explicitly requests to do so. Lua coroutines are asymmetric. They
are controlled through calls to the coroutine module. A coroutine is de�ned
through an invocation of create with a function as parameter. The created
coroutine can be (re)initiated by invoking resume, and executes until it suspends
itself explicitly calling yield. The �rst value returned by coroutine.resume is
true or false indicating whether the coroutine was resumed successfully, further
results are the values passed optionally to yield.

Listing 1: Example using Lua coroutines

1 f u n c t i o n f unc ( )
2 c o r o u t i n e . y i e l d ( "Now I 'm y i e l d i n g " )
3 end
4

5 co = co r o u t i n e . c r e a t e ( func )
6 p r i n t ( c o r o u t i n e . resume ( co ) ) −−> t r u e Now I 'm y i e l d i n g
7 p r i n t ( c o r o u t i n e . s t a t u s ( co ) ) −−> suspended
8 c o r o u t i n e . resume ( co )
9 p r i n t ( c o r o u t i n e . s t a t u s ( co ) ) −−> dead

2.2 LChords by example

The intention, when we developed our chord library, was to implement in Lua
the chord semantics as described in Polyphonic C# [1], trying to surpass the
limitations involved in building a library instead of compiling a new language.
When appropriate, other extensions to chords are evaluated.

Our implementation of LChords allows coordinating synchronous and asyn-
chronous messages. The distinction between synchronous or asynchronous in
LChords de�ne the way methods behave after a match, that is, after all the
messages are received: asynchronous methods return immediately, while the (at
most one) synchronous method block until the chord is enabled. Note that, in
consequence, any number of asynchronous methods can be called on the same
coroutine even if they take part of the same chord header. The chord will be
eventually �red after all the methods in the header are invoked. That is not
valid for synchronous methods since, when invoked, they block the execution of
the coroutine, preventing the invocation of the rest of the methods necessary to
�re the execution of the chord and thus, causing the starvation of that coroutine.

3



After the invocation of a method, the value of the arguments of the call must
be saved until the rule is satis�ed. There is no guarantee that the value of the
arguments is not modi�ed from the moment the call is issued until the event of
the execution of the chord body. When a chord is enabled, its body is executed
on the thread of the synchronous method, if any. In our implementation, we
restrict that each chord can declare at most one synchronous method. If no
synchronous method was de�ned in chord, a new thread (coroutine) shall be
created in order to execute the body of the chord.

The chords platform is in charge of creating new messages, so they can be
used across the program as regular functions. In LChord, messages behave
like but are not actually functions, but rather synchronization signals carrying
information. That is, they are not directly executed, they are used to �re the
execution of the chord body using the arguments of the calls as parameters.
Messages may appear in various patterns simultaneously, thus they must be
created as object of the system.

Finally, LChord allows to de�ne sets of joins working together, like the joint
construction in the boost-join library [9]. This favors encapsulation, allows to
group messages in namespaces and to specify diferent policies for every chord
set, like for instance, a scheduling strategy. Besides, sets can be composed in
order to create more complex structures.

The API of LChords can be described as follows:

• new returns a set of chords. This function can optionally receive the policy
to be used for matching.

• msgs allows to de�ne the messages of a chord set. It receives a string
containing the name of every message to be created, plus a �sync� identi�er
when the message is synchronous.

• join creates a chord. It receives a list of messages with their parameters
as strings, and the function that constitutes the body of the chord.

To illustrate how the library can be used, we describe the solution for a
well known multi-process synchronization problem: the producers-consumers
problem, as programmed using LChords.

To de�ne a bu�er for the producers-consumers problem, we need to load the
lchord library:

l o c a l l c h o r d = r e q u i r e ` ` l c h o r d ' '

then we initialize a new set of chords we called bu�er:

l o c a l b u f f e r = l c h o r d . new ( p o l i c y )

Now we can de�ne the valid messages in bu�er. We need the message put to
send a value to the bu�er, and the message empty to mimic the availability of
slots inside the bu�er (a message per slot). We create message get in order to
receive the value saved in the bu�er and a message full to indicate that the
bu�er has full slots. Messages put and get are declared as synchronous because
they are locked until the condition (empty or full, respectively) be satis�ed.

b u f f e r : msgs ( ' s ync get ' , ' s ync put ' , ' f u l l ' , ' empty ' )

Now, messages can be accessed inside the namespace buffer, as buffer.get,
buffer.full, etc. To express the two synchronization rules enforced in the
problem we write:

4



b u f f e r : j o i n ( b u f f e r . put ) ' v a l ' '& ' ( b u f f e r . empty ) ' ' {
f u n c t i o n ( v a l ) b u f f e r . f u l l ( v a l ) end

}
b u f f e r : j o i n ( b u f f e r . ge t ) ' ' '& ' ( b u f f e r . f u l l ) " v a l " {

f u n c t i o n ( v a l ) b u f f e r . empty ( ) ; r e t u r n v a l end
}

Now we create the coroutines, register them in the scheduler and start it.
Messages empty and full do not need a separate coroutine to execute: full will
execute in the space of the coroutine that invoked the put message, in turn,
empty executes in the space of get. The �rst messages empty, those that we need
to initialize the slots in the bu�er, may execute in the main coroutine before
the scheduler is started (otherwise it would never be scheduled). In the example
implement a two-place bu�er by sending the message empty twice.

b u f f e r . empty ( )
b u f f e r . empty ( )

l o c a l Get1 = co r o u t i n e . c r e a t e ( b u f f e r . ge t )
l o c a l Get2 = co r o u t i n e . c r e a t e ( b u f f e r . ge t )
l o c a l Put1 = co r o u t i n e . c r e a t e ( b u f f e r . put )
l o c a l Put2 = co r o u t i n e . c r e a t e ( b u f f e r . put )

b u f f e r . s c h e d u l e r : r e g i s t e r ( Put1 , 35)
b u f f e r . s c h e d u l e r : r e g i s t e r ( Put2 , 21)
b u f f e r . s c h e d u l e r : r e g i s t e r ( Get1 )
b u f f e r . s c h e d u l e r : r e g i s t e r ( Get2 )

b u f f e r . s c h e d u l e r : s t a r t ( )

This solution for the producers-consumers problem has the advantage of allow-
ing to create bu�ers of any size, just by sending the desired number of empty

messages to create the slots. Non interference among the coroutines is guaran-
teed because the information is not shared but transferred as arguments when
the messages are invoked.

In what follows, we describe a more interesting example: a chord-based solu-
tion to the Dijsktra's dining philosophers problem. Solving this problem using
chords is attractive because avoid deadlock by design: a necessary condition
for a deadlock to occur is that resources be taken one at a time and are only
released after the end of execution. In this case, it does not happen, since the
resources are taken all at once or none. Two forks are grabbed, or none.

2.2.1 The dining philosophers by LChords

There is a group of philosophers (the number is irrelevant here, if more than
one) performing continually the same actions: eating and thinking. They need
two forks to eat but those forks are shared: one with the left neighbour in the
table, and the other with the right neighbour.

Since each philosopher perform the same actions, and to avoid repeating the
same code for all philosophers, we encapsulate their behaviour in a class we
named Philosopher. Initially we can de�ne the class Philosopher as:

Ph i l o s o ph e r : new = f u n c t i o n (name , l e f t F o r k , r i g h t F o r k )
t h i s P h i l = {}
t h i s P h i l . name = name
t h i s P h i l . l e f t F o r k = l e f t F o r k
t h i s P h i l . r i g h t F o r k = r i g h t F o r k
r e t u r n t h i s P h i l

end

where leftFork and rightFork are the forks the philosopher needs to be able to
eat.

5



As the philosopher needs both forks to eat, we create a chord to specify the
synchronization rule that enables the philosopher to eat after the invocation
of those messages plus a takeForks message indicating that the philosopher is
hungry. Note that we need a di�erent takeForks message for every philosopher.
We achieve this encoding its creation as part of the class and creating a message
which name is the result of concatenating the string takeForks with the name
of the philosopher we are instantiating:

Ph i l o s o ph e r : msgs ( ' s ync t akeFo rk s ' . . name )
t h i s P h i l . t a k eFo rk s = Ph i l o s o ph e r [ " takeFo rk s " . . name ]

Now we can de�ne synchronization rules made by invocations to the methods
leftFork and rightFork respect to each philosopher:

Ph i l o s o ph e r : j o i n ( l e f t F o r k ) ' ' '& ' ( r i g h t F o r k ) ' ' '& '
( t h i s P h i l . t ak eFo rk s ) ' s e l f ' {

f u n c t i o n ( s e l f )
p r i n t ( " Ph i l " , s e l f . name , " i s e a t i n g wi th " , s e l f . l e f t F o r k , s e l f . r i g h t F o r k )
c o r o u t i n e . y i e l d ( ) −− I ' l l l e t ano the r to p r o g r e s s

end
}

Messages leftFork and rightFork indicate that the forks are available. To
initiate the execution, the forks must be available, thus we make a call corre-
spondent to every fork.

l e f t F o r k ( ) −−We have to send t h i s message to s t a r t

Note that the forks are messages shared with the left and right neighbour of
each philosopher, respectively. Thus, we need to de�ne a message for every fork,
in this case we have four philosophers:

Ph i l o s o ph e r : msgs ( ' f o r k 0 ' , ' f o r k 1 ' , ' f o r k 2 ' , ' f o r k 3 ' )

Now we can initialize a philosopher, specifying its name and its corresponding
forks:

l o c a l marx = Ph i l o s o ph e r : new ( 'Marx ' , P h i l o s o ph e r . f o rk0 , Ph i l o s o ph e r . f o r k 1 )
l o c a l e n g e l s = Ph i l o s o ph e r : new ( ' Enge l s ' , P h i l o s o ph e r . f o rk1 , Ph i l o s o ph e r . f o r k 2 )
. . .

Now that our class is done, we register the coroutine that will execute the
philosophers' code, and then we start the scheduler:

f o r _, p h i l i n i p a i r s {marx , enge l s , hege l , maqui} do
l o c a l co ro = co r o u t i n e . c r e a t e ( p h i l . run )
Ph i l o s o ph e r . s c h e d u l e r : r e g i s t e r ( coro , p h i l )

end

Ph i l o s o ph e r . s c h e d u l e r : s t a r t ( )

The example shows a feature of LChords that is allowing the dynamic cre-
ation of messages and chords. Note that it is possible to declare new messages
dynamically, as it was required in order to have a di�erent takeForks message
for every Philosopher. After that message was created, we needed to de�ne the
synchronization conditions that allow to control when the apetite of the philoso-
pher can be satis�ed. On the other side, the fork messages where created on
the beginning of the program and are shared by the philosophers.

This example also shows an advantage of using chords: it is possible to avoid
deadlock by means of guaranteeing that there is no way a resource will be taken
unless all the needed resources are available. It is known that a necessary con-
dition for deadlock is the gradual acquisition of resources so that they are not

6



released until the task is completed. That is typical of lock-based implementa-
tions of the problem of the dinning philosophers where a fork is taken and then
the other. In chords it should not happen since messages are only consumed
when the chord is enabled, and then they are all consumed once. An excep-
tion is when there is a composition of joins and a circular dependency among
resources taking part in the composition or another joins.

The complete program is shown in listing 2 .

Listing 2: A dinning philosphers implementation

1 l o c a l l c h o r d = r e q u i r e " l c h o r d "
2 l o c a l math = r e q u i r e "math"
3

4 Ph i l o s o ph e r = l c h o r d . new ( )
5 Ph i l o s o ph e r : msgs ( ' f o r k 0 ' , ' f o r k 1 ' , ' f o r k 2 ' , ' f o r k 3 ' )
6 Ph i l o s o ph e r . new = f u n c t i o n ( s e l f , name , l e f t F o r k , r i g h t F o r k )
7 t h i s P h i l = {}
8 t h i s P h i l . name = name
9 t h i s P h i l . l e f t F o r k = l e f t F o r k

10 t h i s P h i l . r i g h t F o r k = r i g h t F o r k
11 Ph i l o s o ph e r : msgs ( ' s ync t akeFo rk s ' . . name )
12 t h i s P h i l . t a k eFo rk s = Ph i l o s o ph e r [ " takeFo rk s " . . name ]
13 Ph i l o s o ph e r : j o i n ( l e f t F o r k ) ' ' '& ' ( r i g h t F o r k ) ' ' '& ' ( t h i s P h i l . t ak eFo rk s ) ' s e l f ' {
14 f u n c t i o n ( s e l f )
15 p r i n t ( " Ph i l " , s e l f . name , " i s e a t i n g wi th " , s e l f . l e f t F o r k , s e l f . r i g h t F o r k )
16 c o r o u t i n e . y i e l d ( )
17 end
18 }
19 t h i s P h i l . r e l e a s e F o r k s = f u n c t i o n ( s e l f )
20 p r i n t ( " I am " , s e l f . name , " r e l e a s i n g f o r k s " , s e l f . l e f t F o r k , s e l f . r i g h t F o r k ) ;
21 s e l f . l e f t F o r k ( ) ; s e l f . r i g h t F o r k ( ) ;
22 p r i n t ( " I am " , s e l f . name , " f o r k s r e l e a s e d " , s e l f . l e f t F o r k , s e l f . r i g h t F o r k ) ;
23 c o r o u t i n e . y i e l d ( )
24 end
25 t h i s P h i l . t h i n k = f u n c t i o n ( s e l f )
26 p r i n t ( " I am " , s e l f . name , " , go ing to s l e e p " ) ;
27 Ph i l o s o ph e r . s c h e d u l e r : s l e e p (math . random ( 5 ) ) ;
28 end
29 t h i s P h i l . e a t = f u n c t i o n ( s e l f )
30 p r i n t ( " I am " . . s e l f . name . . " I ' l l t r y to ea t w i th " , s e l f . l e f t F o r k , s e l f . r i g h t F o r k )
31 s e l f : t a keFo rk s ( )
32 s e l f : r e l e a s e F o r k s ( )
33 end
34 t h i s P h i l . run = f u n c t i o n ( s e l f )
35 wh i l e t r u e do s e l f : t h i n k ( ) ; s e l f : e a t ( ) end
36 end
37 t h i s P h i l . l e f t F o r k ( ) −−We have to send t h i s message to s t a r t
38 r e t u r n t h i s P h i l
39 end
40 l o c a l marx = Ph i l o s o ph e r : new ( 'Marx ' , P h i l o s o ph e r . f o rk0 , Ph i l o s o ph e r . f o r k 1 )
41 l o c a l e n g e l s = Ph i l o s o ph e r : new ( ' Enge l s ' , P h i l o s o ph e r . f o rk1 , Ph i l o s o ph e r . f o r k 2 )
42 l o c a l heg e l = Ph i l o s o ph e r : new ( ' Hege l ' , P h i l o s o ph e r . f o rk2 , Ph i l o s o ph e r . f o r k 3 )
43 l o c a l maqui = Ph i l o s o ph e r : new ( ' Maqu iave lo ' , P h i l o s o ph e r . f o rk3 , Ph i l o s o ph e r . f o r k 0 )
44 f o r _, p h i l i n i p a i r s {marx , enge l s , hege l , maqui} do
45 l o c a l co ro = co r o u t i n e . c r e a t e ( p h i l . run )
46 Ph i l o s o ph e r . s c h e d u l e r : r e g i s t e r ( coro , p h i l )
47 end
48 Ph i l o s o ph e r . s c h e d u l e r : s t a r t ( )

2.3 Discussion

Several aspects of LChord deserve a through discussion. One of them refers to
how the arguments of the message invocations are associated with the formal
parameters of the chord body. Plociniczak and Eisenbach [13] suggested that
declaring formal parameters could be unnecessary. However, since the chord
body is actually a function and, in Lua, functions are �rst class values that

7



can be de�ned anywhere on the code, we found this idea would be error-prone.
Thus, in LChords, the association between real parameters on the declaration
of the messages at the header and actual parameters in the body of the chord, is
based on matching the names of the parameters. In consequence, the restriction,
posed in the asynchronous join calculus [3], that the methods on the same header
cannot have the same names, and formal parameters are pairwise disjoint, is in
place also here. On names collision, the actual value of these parameters is
unspeci�ed.

When a message is called, the arguments of the call are saved until the chord
is enabled. Since Lua is dynamically typed, there are no limits or in kind or in
number to the arguments of an invocation. Any type of value is valid. If the
amount of values is higher than the values de�nition, it will be ignored, if lower,
the rest of the values are considered nil.

Another issue is related to the fact that actual parameters can mutate from
the invocation of the message to the moment when the body is executed. In
Lua, some values are immutable, like numbers or strings, while other values,
like tables or coroutines, have an internal mutable state that can be changed
by the application. In our implementation, arguments are saved at the time of
the invocation. What will happen if they are modi�ed in the meantime? For
example, a coroutine may be resumed and then terminate changing it state to
dead. Therefore, it is possible for a chord to try to execute a coroutine that
is active at the moment of the call, but is dead when the body of the chord is
�nally activated.

This comes naturally from separating the invocation of a method/function
from its execution having concurrency in a stateful language where processes
(coroutines) are sharing references. In fact, a locking solution would not do
better: the execution of a method/function requiring mutual exclusion must
delay while there is another process accessing a common resource, which side-
e�ects could include modifying the value of common variables. Then, when
the method/function is unlocked, it should verify if the data to be handled
is still valid. In Lua this can potentially arise for any composite value, since
those values are references instead of native values. Saving a deep copy of the
values instead of a reference would be an alternative, though a quite expensive
one. Another consists in forcing inmutability (See [2]), which would otherwise
require compiler support. Our implementation assumes this fact as part of its
semantics, the programmer should be aware of.

Concerning the invocation of synchronous methods, the process (coroutine)
where they are executing must block until the chord is enabled. Then, when
the join is matched, the chord body is executed on the space of the coroutine
where the call was issued. As noted by Benton et al. [1], allowing more that one
synchronous process on a chord would permit the construction of a rendezvous
like synchronization. However, as they explain (i) it is possible to construct such
mechanism combining single-synchronous-method based chords (ii) the choice
of the thread where the body is executed would in�uence the result of the
execution . The current implementation of LChords considers the presence of
at most one synchronous method.

On the other hand, synchronization methods are not mandatory in a header.
When all methods in a header are asynchronous, our implementation assumes
the same decision made in Polyphonic C#/Cω, that is, a new computation (in
this case, a new coroutine) is created to preserve the asynchronous speci�ca-

8



tion. This, however, leads to another problem. When the chord is enabled,
the library must execute the body in a new coroutine to avoid delaying the last
asynchronous method. However, Lua coroutines are asymmetric. Di�erent from
symmetric coroutines, that provide a transfer function allowing to transfer con-
trol to any coroutine, asymmetric coroutines always return to the coroutine that
made the resume. That means that the method will not be able to return until
the initiated coroutine yields or returns. The general idea of chords over co-
operative multithreading calls for the need of a scheduler: when a synchronous
method blocks, the control must return to another non-blocked coroutine. An
asynchronous call in a chord with no synchronous messages should return imme-
diately and leave the execution of the body to a scheduler he should be aware of.
That scheduler does not need to be necessarily provided as part of the platform.

Computations may need to return results. Coroutines may return results
either when yield or the execution is ended, then the results are received by the
coroutine that issued the resume, in this case, the scheduler. For the user to
collect the results of a coroutine, a method must be provided by scheduler to
that end.

It is known that the coexistence of inheritance and concurrency in concurrent
object oriented languages originate a group of problems collectively called as
inheritance anomaly [10].

The join-calculus and the implementation guarantees that if there is a match,
some chord will be enabled. However, since there is not ordering guarantees
(that is, any enabled chord will be selected for execution), a blocked process
could starve. Avoiding starvation requires de�ning fair scheduling policies. On
the other hand, contrary to what may seem, it is still possible to write chorded
programs su�ering from deadlock. Lets take the following example:

sync put ( v ) & empty ( ) { f u l l ( v )}
sync get ( ) & f u l l ( v ) {empty ( )}

According to this code, the continuation full will only be executed after the
put and empty calls are issued. Similarly, empty will be called after a full and
get messages are received. That is, a system of two processes invoking get

and put cannot proceed if full or empty were not previously �red. We can see
there is a circular dependency, and both get and put are synchronous, thus they
will block until the respective chord is enabled, that is, forever. If synchronous
methods must be used, this problem could be solved incrementing the chord
with a timeout, to guarantee �nite await time, and some way to inform that an
error occurred. Support for timeouts is already present in other languages with
concurrency support like Ada and Java.

2.4 The need for synchronization mechanisms in Lua: a

case for a coroutine-targeted implemention

Lua coroutines provide means for cooperative multithreading in Lua [?]. One
advantage of cooperative multithreading is that the programmer can avoid spe-
cial synchronization mechanisms by carefully choosing the points in the code
where each thread yields the execution making their synchronization implicit.
However, sometimes it might be necessary to yield at points in the code that
might result race conditions. For example, consider the code below:

f u n c t i o n ForwardTo ( data , host , po r t )

9



l o c a l sock = ReuseSockTo ( host , po r t )
l o c a l sent , e r r , l a s t p o s = 0
wh i l e t r u e do

sent , e r r , l a s t p o s = sock : send ( data , l a s t p o s +1)
i f not s en t and e r r == " t imeout " then

y i e l d ( " wa i tUn t i lW r i t e " , sock )
e l s e

break
end

end
end

Function ForwardTo sends a byte stream over a socket by repeatedly sending
chunks of the stream as big as allowed by the underlying network infrastructure.
Whenever the send operation on line ?? does not completes due to a timeout,
the function yields to the scheduler requesting that it remains suspended until
the socket is ready to be written again. This yield must be done in order to
improve performance by allowing other threads to run while the current threads
waits for the socket to be ready. Ideally, this is not a good point to yield because
during this yield other threads can gain the right to execute and write into the
same socket interfering with the stream being sent. As a result, there is the
need for some synchronization mechanism to avoid that more than one thread
writes to the same socket concurrently.

Using LChords we can implement a synchronization mechanisms as illus-
trated below, where we create a chord to send data through a socket. The start
message is used only to enable the sender to accept one send request through the
message send. Whenever the data is entirely sent, the body of the chord calls
message start again to allow other send request to be processed. Message send

can be either synchronous or asynchronous depending whether the programmer
wants that a call to message send returns immediately or only after the data is
completely sent over the socket.

s ende r = l c h o r d . new ( )
s ende r : msgs ( ' s t a r t ' , ' s ync send ' )
s ende r : j o i n ( s ende r . s t a r t ) '& ' ( s ende r . send ) ' data ' ' ho s t ' ' po r t ' {

f u n c t i o n ( data , host , po r t )
ForwardTo ( data , host , po r t )
s ende r : s t a r t ( )

end
}
s ende r : s t a r t ( )

s ende r : send ( "He l l o , World ! " , "some_host" , 12345)

Arguably, it is much more simpler to provide multithread synchronization
mechanisms in a cooperative model than in a preemptive model. However,
we implemented our LChords library using a cooperative multithreading model
over coroutines as means to experiment with the concept of chords to implement
synchronization mechanisms for cooperative threads.

3 Implementation

This section describes the issues we have resolved to provide such behaviour as
a Lua library.

There is a clear separation of what is done at �con�guration time� and at
runtime. Because transactions executed at runtime hurt performance, it is wise
to transfer as much as possible of those operations to the �con�guration� stage.

10



At the con�guration stage, the messages and queues are created, both join
patterns and their continuations are registered, and the arguments of the mes-
sages are associated with the continuations parameters.

Then, at runtime, for every invocation it must be veri�ed if some pattern is
already satis�ed (that is, if the invocation just issued has enabled some join). In
that case, the continuation correspondent to the matched pattern will be exe-
cuted using as parameters the arguments stored for every (enqueued onto the in-
vocations queue) invocation involved in the selected join, consequently removed
(popped of the invocations queue). Of course, that process will hurt perfor-
mance, thus the implementation must invest in optimizing as much as possible
the runtime procedure. It is also fundamental that the framework guarantees
atomicity during matching, message queue operations and job scheduling [1].

3.1 Con�guration stage

The con�guration stage starts with the creation of the chord set. A chord set is
a table that contains the methods exported by the API, that is, methods msgs

and join, along with a group of private �elds, namely, the mask of bits of the
set, the list of messages, the list of joins and the scheduler.

When the msgs function is called, a new entry in inserted in the messages
list. That entry contains an index, the name of the message that was received
as a parameter during the creation of the message, whether this message is
synchronous, and a reference to the queue where the arguments of the calls to
this message are saved. The index of the message indicates the bit correspondent
to this message in the set bitmask. Every set has a mask of bits indicating
that there are pending calls at the correspondent message queue, in order to
enhance the performance during matching. The list of messages is indexed by
the reference to the function inpersonating the message/method, that function
is actually a closure that encapsulates a self-reference: when invoked, the call
to this message is enqueued, the bitmask is set, and the match process starts to
check for an enabled join.

l o c a l whenCa l l ed = f u n c t i o n ( se t , f , . . . )
l o c a l msg = s e t .__msgL [ f ]

msg . queue : enqueue ( . . . )
s e t . __bitMask : s e t (msg . i nd e x )
s e t . s c h e d u l e r : match ( se t , f )

end

Finally, a new key is created in the set table in order to access this message
inside the set namespace, as set.msg.

The list of joins is incremented with calls to the join function. The join

arguments are parsed recursively in order to extract the messages composing
the join and their arguments, along with the function to be executed when the
chord is enabled. That function and the mapping between arguments of the calls
to the parameters of the function are saved into the �elds of the join. The need
to extract the parameter names of inactive functions was one of the motivations
for choosing the new version of Lua 5.2 (at this moment, still an alpha version).
Another reason was the availability of bitwise operations. Every join pattern
is coded as a bit mask in order to enhance the performance of the matching
procedure, just as described in [1], that mask is permanent during the whole
execution.

11



Now the scheduler can be started.

3.2 Runtime stage

When a message is invoked, the call is enqueued, the bit mask is set, and the
match function is called in order to test for a match.

The match is retrieved by the chosen policy. If no match is found, asyn-
chronous messages just return. Synchronous messages, instead, must block un-
til the chord is enabled, thus their coroutine is put to sleep: it is moved into a
list for sleeping coroutines and yielded. When the join is enabled, that corou-
tine will be resumed in order to execute the continuation of the join. Since all
the parameters of the execution will be available only after the join is enabled,
the coroutine receives them as resume arguments. Then the function can be
executed:

t a b l e . i n s e r t ( s e l f . s l e e p i n g [ msg ] , co ro )
l o c a l func , params = co r o u t i n e . y i e l d ( )
func ( t a b l e . unpack ( params ) )

When a match is found, a cleanup procedure is triggered. Every call involved
in the match are dequeued, and the call arguments replaced in the function call.
Arguments shortages and surpluses are ignored. Then, if the queues are already
empty, the correspondent bit in the set bitmask must be cleared. If the join
matched has no synchronous messages, then a new coroutine is registered on
the scheduler in order to execute the continuation, and the message that trig-
gered the match returns. To the contrary, if there is a synchronous message in
the join and that is the one that executes in the current coroutine, the func-
tion is just executed. Would otherwise, the synchronous method of the join
is blocked waiting for a match, thus we must move it from the sleeping table
and registering it back in the scheduler with the function and the parameters of
the continuation. The scheduler will resume it using the function and the pa-
rameters of the continuations as arguments, that will be returned by the yield

function the coroutine was executing (see 3.2).
Aditionally, the scheduler provides functions for registering coroutines, re-

turning results and timing functions. Timing functions are necessary when the
scheduler is idle to avoid a busy wait, and to allow functions to sleep, for in-
stance, in the example of the Dining Philosophers. For example, the function
sleep yields if the timeout has not been reached yet.

s l e e p = f u n c t i o n ( s e l f , t imeout )
l o c a l StartTime = os . t ime ( )
wh i l e s e l f . t ime ( Star tTime ) < t imeout do

c o r o u t i n e . y i e l d ( )
end

end ,

3.3 Custom Policies

If several Polyphonic chords are enabled, in theory an unspeci�ed chord is se-
lected for execution, while in fact, the policy is �rst match��rst run. We have
studied ways for the framework to allow the programmer to de�ne custom poli-
cies. This section discusses various examples of frequently used policies to de-
termine what the framework should provide in order to make this possible.

12



3.3.1 A sched_�rst_match policy

The �rst_match_policy is a policy frequently provided in practical chord im-
plementations. Following this policy the program returns the �rst join found
enabled. Provided that the platform makes available an iterator that returns
every matched join in any order (that non-determinism is o�ered for free by Lua
hash tables), we just need to make calls to the iterator until the result is false
or the end of the table was reached (a nil is returned).

l o c a l d e f a u l t = f u n c t i o n ( s e t )
f o r s t a t u s , j o i n i n i t e r F a c t ( s e t ) do

i f s t a t u s==t r u e then r e t u r n j o i n end
end
r e t u r n n i l

end

3.3.2 Implementing a sched_round_robin policy

In a sched_round_robin policy, the selected join must be the one least recently
enabled. To implement that policy, the user-programmer can increment the
joins with �elds to allow for custom matching:

l o c a l round_robin = f u n c t i o n ( s e t )
l o c a l r e t = n i l
f o r s t a t u s , j o i n i n i t e r F a c t ( s e t ) do

i f s t a t u s==t r u e then
i f j o i n . _ v i s i t e d == n i l then

j o i n . _ v i s i t e d = os . t ime ( )
r e t u r n j o i n

e l s e
i f r e t == n i l then

r e t = j o i n
e l s e

r e t = r e t . _ v i s i t e d > j o i n . _v i s i t e d and j o i n or r e t
end

end
end

end
i f r e t then r e t . _ v i s i t e d = os . t ime ( ) end
r e t u r n r e t

end

3.3.3 Implementing a sched_sync_�rst policy

Another policies to be considered include:

1. sched_longest_match: that is, order by the number of messages contained
in a join;

2. sched_sync_�rst: joins containing sync messages have higher priority;

3. sched_pri_�rst_match, sched_pri_longest_match, sched_pri_round_robin:
priorities based policies.

4 Analysis

We have noted in those examples the main advantage of programming using
chords, namely: making synchronization rules explicit. We can also see how
the characteristics of Lua, like dynamic typing and cooperative concurrency
support, made the implementation easier in some aspects.

13



4.1 The need for a multithreaded implementation

Actually, the real need for chords and the worst problems it could face come in
a (really) concurrent environment, when race conditions and other concurrent
hazards are in place. While Lua's coroutine approach for concurrency works
very well for monoprocessor architectures, the fact is that currently it cannot
exploit fully the nowadays ubiquitous multicored architectures.

Several proposals can be found in literature to solve this problem, all of
them with there strengts and weaknesses. (cite) The remainder of this paper
discusses our implementation of a concurrent Lua based on the proposed chord
library and the challenges it represents compared to the coroutine version.

5 Final remarks

Concurrency is an urgent issue in modern programming. Languages should
provide mechanisms allowing programmers to write correct and predictable pro-
grams that can take advantage of the computational power provided by current
architectures. This work studies chords, a high level synchronization construc-
tion adequate for multithreaded environments. Through the implementation of
a chord library in Lua, we have analyzed the issues related with this mechanism.
The implementation took advantage of several Lua features such as �rst-order
functions and dynamic typing. We have concluded that the main advantage of
chords is in its capacity for declarative speci�cation of synchronization. On the
other hand, we noted some problems that show up when using chords, and we
studied how some of those problems can be overcome.

The reader can notice that our implementation enjoys the simplicity of the
cooperative multithreading model, turning unnecessary to use locking mecha-
nisms �under the hoods�. As Benton et alii [1] comment, implementing chords
require atomicity to decide if a chord was enabled, to pop pending calls and
when scheduling the chord body for execution. In Lua, atomicity is guaranteed
since it is the programmer who explicitly give the control up by placing calls to
yield on its program.

As a future work, given the di�erences among the various implementations,
we want to know: What are the roots for those mismatches? Do they rely on
the particular language characteristics? What should be de�ned as the minimal
chord implementation and what can be left for the user/programmer to decide?

Acknowledgements

This work was partially funded by CNPq Brasil.

References

[1] Nick Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency
abstractions for C#. ACM Transactions on Programming Languages and
Systems (TOPLAS), 26(5):769�804, 2004.

[2] Jan Schäfer Christian Haack, Erik Poll and Aleksy Schubert. Immutable
Objects for a Java-Like Language. In Proc. European Symposium On Pro-

14



gramming 2007, volume 4421 of Springer Lecture Notes in Computer Sci-
ence, pages 347�362, 2007.

[3] Cedric Fournet and Georges Gonthier. The Join Calculus: a language for
distributed mobile programming. In In Proceedings of the Applied Seman-
tics Summer School (APPSEM), Caminha, pages 268�332. Springer-Verlag,
2000.

[4] Vadim Guzev. Parallel C#: the usage of chords and higher-
order functions in the design of parallel programming languages, 2008.
http://parallelcsharp.com/docs/conferences/PDPTA08/PDPTA08.pdf.

[5] Vadim Guzev and Yury Serdyuk. Asynchronous Parallel Programming
Language Based on the Microsoft .NET Platform. In PaCT 2003 : parallel
computing technologies, volume 2763/2003 of Lecture Notes in Computer
Science, pages 236�243. Springer, 2003.

[6] Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes.
The evolution of Lua. In HOPL III: Proceedings of the third ACM SIG-
PLAN conference on History of programming languages, pages 2�1�2�26,
New York, NY, USA, 2007. ACM.

[7] Stewart Itzstein and Mark Jasiunas. On implementing high level concur-
rency in Java. In In Proceedings of the Eighth Asia-Paci�c Computer Sys-
tems Architecture Conference, Lecture Notes in Computer Science, pages
151�165. Springer, 2003.

[8] Edward A. Lee. The problem with threads. Computer, 39(5):33�42, 2006.

[9] Yigong Liu. Join - asynchronous message coordination and concurrency
library. Available at http://code.google.com/p/join-library/, 2007. Last
visited on 13 january 2011.

[10] Satoshi Matsuoka and Akinori Yonezawa. Analysis of inheritance anomaly
in object-oriented concurrent programming languages. pages 107�150, 1993.

[11] A. Milanés and R. S. Bigonha. Moonlight Chords. 4th Workshop on Lan-
guages and Tools for Multithreaded, Parallel and Distributed Programming
(LTPD 2010), 2010.

[12] Martin Odersky. Functional nets. In Gert Smolka, editor, ESOP, volume
1782 of Lecture Notes in Computer Science, pages 1�25. Springer, 2000.

[13] Hubert Plociniczak and Susan Eisenbach. Jerlang: Erlang with joins. In
Dave Clarke and Gul A. Agha, editors, COORDINATION, volume 6116 of
Lecture Notes in Computer Science, pages 61�75. Springer, 2010.

[14] Tiark Rompf. Design and implementation of a programming language for
concurrent interactive systems. Master's thesis, 2007.

[15] Claudio V. Russo. Join patterns for visual basic. In Proceedings of the
23rd ACM SIGPLAN conference on Object-oriented programming systems
languages and applications, OOPSLA '08, pages 53�72, New York, NY,
USA, 2008. ACM.

15



[16] Martin Sulzmann and Edmund S.L. Lam. Haskell - Join - Rules. In Olaf
Chitil, editor, IFL '07: 19th Intl. Symp. Implementation and Application
of Functional Languages, pages 195�210, September 2007.

[17] Sergio Vale e Pace. Programação concorrente baseada em acordes para
plataforma Java. Master's thesis, Departamento de Ciência da Com-
putação, DCC/UFMG, 2009.

16


	1 Introduction
	2 Lua chords
	2.1 Brief introduction to Lua
	2.2 LChords by example
	2.2.1 The dining philosophers by LChords

	2.3 Discussion
	2.4 The need for synchronization mechanisms in Lua: a case for a coroutine-targeted implemention

	3 Implementation
	3.1 Configuration stage
	3.2 Runtime stage
	3.3 Custom Policies
	3.3.1 A sched_first_match policy
	3.3.2 Implementing a sched_round_robin policy
	3.3.3 Implementing a sched_sync_first policy


	4 Analysis
	4.1 The need for a multithreaded implementation

	5 Final remarks

