Noname manuscript No.
(will be inserted by the editor)

A Model for Estimating Change Propagation in
Software

Kecia A. M. Ferreira - Mariza A. S.
Bigonha - Roberto S. Bigonha - Bernardo
N. de Lima - Barbara M. Gomes - Luiz
Felipe O. Mendes

Received: date / Accepted: date

Abstract A major issue in software maintenance is change propagation. A soft-
ware engineer should be able to assess the impact of a change in a software system,
so that the effort to accomplish the maintenance may be properly estimated. We
define a novel model, named K3B, for estimating change propagation impact. The
model aims to predict how far a set of changes will propagate throughout the
system. K3B is a stochastic model that has as input parameters about the system
and the number of modules which will be initially changed. K3B returns the esti-
mated number of change steps, considering that a module may be changed more
than once during a modification process. We provide the implementation of K3B
for object-oriented programs. We compare our implementation with data from an
artificial scenario, given by simulation, as well as with data from a real scenario,
given by historical data. We found strong correlation between the results given by
K3B and the results observed in the simulation, as well as with historical data of
change propagation. K3B may be used for comparing software systems from the
viewpoint of change impact. The model may aid software engineers in allocating
proper resources to the maintenance tasks.

Keywords change propagation - change impact analysis (CIA) - software
maintenance - software metrics - comparing programs - stochastic process -
Markov Chain

The authors would like to thank FAPEMIG - Fundacao de Amparo & Pesquisa do Estado de
Minas Gerais, which has sponsored Barbara M. Gomes (CEFET-MG) and Luiz F. O. Mendes
(UFMG) as undergraduated students.

F. Author

Department of Computing, CEFET-MG, Belo Horizonte-MG, Brazil
Tel.: +55-31-33196870

Fax: +55-31-33196722

E-mail: kecia@decom.cefetmg.br

S. Author

Department of Computer Science, UFMG, Belo Horizonte-MG, Brazil
Tel.: +55-31-34095860

Fax: +55-31-34095858

E-mail: mariza@dcc.ufmg.br

2 Kecia A. M. Ferreira et al.

1 Introduction

Software maintenance is the most costly activity in the software life-cycle. About
2/3 of the total cost of a software system is due to maintenance activities, whereas
only 1/3 is due to the development of the system (Sommerville 2011). One of
the most important problems in software maintenance is the change propagation
effect (Hassan and Holt 2004), which refers to the process in which a change
in a particular module of the system, or in a set of modules, causes changes in
other modules of the system successively. A module, in this context, is a piece of
software. In a object-oriented project, for instance, a class can be considered as a
module. When performing a change in a set of modules of a system, the developer
should be able to identify what else must be changed in order to keep it consistent
with the initial change. This problem is also referenced in the literature as change
impact analysis (CIA) or ripple effect (Li et al 2012). Due to the importance of
this issue, some works have been carried out in the last decades with the aim
to investigate how changes propagate throughout a software system (Hassan and
Holt 2004; Zimmermann et al 2005; Li et al 2009; Herzig 2010; Herzig and Zeller
2011; Geipel and Schweitzer 2012; Li et al 2012).

Ideally, a small change performed in a module should impact a very few other
modules (Meyer 1997). The easiness to perform changes in a software system is
affected by the internal characteristics of the system, such as information hiding,
coupling and cohesion (Pressman 2009). Therefore, when facing a high pervasive
change propagation, the developer should identify the causes of this effect, and,
hence, refactor the software structure in order to improve its internal quality so
as to lower the change impact rate. However, we still do not have resources to
perform such analysis in software systems properly. There is not a consolidated
method to estimate or to evaluate the effect of change propagation in software.

This work presents a novel model, named K3B, for estimating change propaga-
tion in software systems. The aim of the model is to predict the potential change
propagation effect having as basis the structural characteristics of the software
system, which is assessed by means of software metrics.

K3B represents the change propagation process as a stochastic process. In
short, the main idea of the model is described following. The modification process
starts with the changes performed in a set of modules. From these initial changes,
other modules can be affected and, then, can be also changed successively. The
process of changing a module occurs as follows: i) change starting: open the module
source file for editing; ii) code changing: perform the necessary changes in the
module source code to bring it back to a consistent state; iii) change propagation:
propagate the impact of the changes, if any, to each module connected to it and
immediately start the process of changing in each connected module accordingly;
iv) change finishing: close the module source file. We call change step the event
of starting or finishing a change in a module of the system. The idea of change
step introduced in the proposed model considers the fact that in a real scenario
of maintenance, a module is taken to be changed in a given moment and its
changing process must be declared as concluded in a given moment too. The whole
modification process is accomplished when all the necessary changes are finished,
i.e, when there are no more modules to change in the system relating to the initial
set of changes.

A Model for Estimating Change Propagation in Software 3

The model proposed in this paper aims to estimate the number of change steps
which will be necessary to modify a system so that all changes resulting from a
original set of changes are performed. The main application of this model is, then,
a resource for estimating the cost to keep the system consistent with the initial
changes.

The K3B model has as entry the size of the software, given in number of
modules, the number of modules which will be initially changed, and software
metrics regarding the internal structure of the system. The model is generically
defined in terms of modules, which are separate units of software. In this work, we
propose an implementation of K3B for object-oriented programs.

We evaluated our implementation of K3B in two scenarios: an artificial one,
by comparing the theoretical results of K3B with data from simulation, and in a
real scenario, by comparing the theoretical results of K3B with historical data of
open source projects. For this purpose, we developed a tool to simulate change
propagation in Java programs and to count the resulting number of change steps.
In this evaluation, we used data from 37 releases of 11 Java programs. The results
have shown a strong correlation between the number of change steps given by
K3B and those observed in the simulation. The data of K3B were also compared
with the historical data of change propagation from 10 open-source Java projects
(Geipel and Schweitzer 2012). We have also found a positive correlation about the
results of K3B and the probabilities of change propagation in real scenarios.

The main contributions of our work are the following:

— the definition of a stochastic model, named K3B, for predicting change prop-
agation in software modules (Section 2);

— an implementation of K3B for object-oriented programs (Section 3);

— the empirical evaluation of K3B by means of simulation (Section 4.1), and by
comparing the results produced by K3B with historical data (Section 4.2).

2 The K3B Model

The modification of a program can be viewed as a process described as follows.
During a modification process, a module can be consistent or inconsistent. If an
interface element of a module is changed, all modules that use it will become incon-
sistent at the moment the modifications performed on the module are concluded.
Since more than one interface element of a module can be modified, each module
changing process may cause several sets of modules to be considered inconsistent.
A module that is declared inconsistent needs to be checked for its conformance to
the proper use of the resources provided by modules whose interfaces have been
modified. It will return to a consistent state when it has been properly changed
so that all of its imported resources are used accordingly to their exporting inter-
faces. On the other hand, if the modification process changes its public interface,
all modules that depend on it will become inconsistent, and the propagation of
changes continues.

Before the modification process, all modules of the program are supposed con-
sistent. The process starts when a set of modules are taken to be changed. In
this situation, these modules become inconsistent. The changes of these modules
may demand changes in other ones successively. During this modification process,

4 Kecia A. M. Ferreira et al.

the changes of some modules may be started, and the changes of other modules
may be declared as finished, iteratively. When a module of the system become
consistent or inconsistent, an event is generated. We call this event as a change
step. A change step, then, represents the situation when a change has to be per-
formed or finished in a module. Indeed, during a modification process, the number
of modules to be changed can increase and decreased, iteratively, and the notion
of change step captures this behavior of the modification process. The process is
said accomplished when all modules are consistent again, i.e., when the number of
inconsistent modules is zero.

The model proposed in this work aims to estimate the number of change steps
for a modification process of a system with n classes, when i modules will be
initially changed, until the modification process ends, i.e., until all the changes
resulting from the initial ones are completely finished and all the modules are con-
sistent. The effort needed to update a module, although important for estimating
the maintenance cost, is not considered in the K3B model, because our purpose
is to predict the number of change steps the modification task will take to be
completed.

2.1 Scenario Examples

Consider that a user of an object-oriented system reported an issue to the project
team. After reading the issue report, one of the project developers concluded that
there is an error in the system. Initially, he or she identifies that the error is
related to three classes which need to be changed. The developer takes the three
classes to be changed, starting the changing process. These three classes, then,
go to the inconsistent state and, hence, three change steps are performed. The
developer finishes the maintenance in one of the classes and; so, this class turns
into consistent and one more change step is performed. Let’s call this class A. In
this situation, there are still two classes in the inconsistent state. However, due to
the change in A, the developer identifies that other two classes of the system need
to be changed too. Then, these classes turn into inconsistent and two more change
steps are counted. At this point, there are four classes in the inconsistent state.
The developer finishes the maintenance in one of the four classes, which turns into
consistent. Let’s call this class B. Therefore, one more change step is counted and
there are now three classes in the inconsistent state. However, the developer notes
that A needs to be changed again as a consequence of the change performed in
B. The class A is taken to be changed, turning into inconsistent, and one more
change step is counted. In this situation, there are four classes in the inconsistent
state. The developer finishes the maintenance on them, noting that there is no
more need of change in the system regarding the initial changes, i.e., changing
those four classes will not impact other classes in the system. In this situation, the
four classes turn into consistent and four more change steps are counted. At this
point, all the classes of the system are consistent and the changing process is over.
In the total, five classes were changed and twelve change steps were carried out.
This example describes a maintenance scenario started due to an error in the
system. A similar scenario can occur with other kinds of maintenance. For instance,
consider that a new feature will be included in the system. After designing the
new feature, the software engineer concludes that to include the new feature in

A Model for Estimating Change Propagation in Software 5

the system, three classes of the current system need to be changed. The process
of changing the current system starts by taking the three classes to be changed. A
similar change process, then, may be followed in the same way of the first scenario.

The proposed model aims to predict how many change steps the whole change
process will take. Of course, other problems are involved in a change process. For
instance, the model is not intended to identify the classes that need to be changed,
though this is an important problem in this context too. Nevertheless, the model
aims to aid to estimate the amount of task to be done in order to accomplish a
whole change process, as described in these examples.

2.2 The Model Definition

To define the change propagation model, we represent a software system as a
directed graph in which the nodes represent the modules, and the edges represent
the connections between the modules. A connection from a module A to a module
B represents a dependence relationship in such a way that a change in B may
require a change in A.

Consider a strongly connected software system with n modules and let S =
{0,1,2,...,n} denote the set of possible states of a change process in the system. In
the model, a state corresponds to the number of modules which are inconsistent
in a given moment. A change process ends when the number of modules that are
inconsistent is equal to 0, i.e., when the change process is in state 0. This is the
equilibrium state of the process.

In a real modification process scenario, many modules could simultaneously
have their status switched (to inconsistent or inconsistent). That is, a team may
start changing more than one module a time, as well as, it may conclude the
changes in more than one module a time. The main problem with such assump-
tion is the unit of time to be considered. If we consider a small unit of time, this
assumption becomes unrealistic. For this reason, we do not define the unit of time
in our model. The unit of time can be a second, an hour or even a month. The
model is designed to count the total number of changes that will be necessary to ac-
complish the whole maintenance task. Therefore, the time in which each change is
performed does not matter to the final result. Besides, considering parallel changes
will introduce unnecessary complexity to the model.

Thus, for simplicity, we assume that changes are carried out singly and sequen-
tially, in order to compute the number of change steps. Therefore, when there are
¢ modules inconsistent, i € {1,2,3,...,n — 1}, it is only possible to go to a state in
which there are either ¢ + 1 or ¢ — 1 inconsistent modules. This problem can be
modeled as a Markov Chain. In a Markov Chain, when i is the present state, the
probability of going to future states depends only on the present state, regardless
of the previous states. Figure 1 shows the Random Walk (Petrov and Mordecki.
2003) for this problem. In state 4, the probability that the system goes to state
i+ 1 is q;, and the probability that the system goes to state ¢ — 1 is 1 — g;. The
Random Walk is represented by a probability matrix P = (p;;). Each position j
in the matrix represents the probability that the system goes from state ¢ to state
j. These probabilities are defined as follows.

6 Kecia A. M. Ferreira et al.

1-q; of

0o 1 i-1 i i+1 n-1-n

Fig. 1 The random walk of the change propagation process: 7 is the number of modules in
the inconsistent state in a given moment.

— State 0 is the absorbing state, i.e., the equilibrium state. In this state, the change
process ends. The probability of leaving this state is 0, and the probability of
staying in it is 1. Hence, row 0 of the matrix is filled as follows.

 [1ifj=0
Poi =Y 0ifj#£0

— In state n, all modules are inconsistent. In this situation, the only possibility
is to go to state n — 1. Thus, row n of the matrix is filled as follows.

 f1ifj=n—1
Pni=0itj£n—1
/;
— In the intermediate states 4, i € {1,2,3,...,m — 1}, it is only possible to go to
state ¢ + 1 or ¢ — 1. The probability of going to state ¢ + 1 is g;, and the

probability of going to state ¢ — 1 is 1 — ¢;. In such states, the matrix is filled
as follows.

0 ifjAitljAi1
Dij = G ifj=i+1
l—qiifj=i—1

We use the term “contamination rate” to designate the rate with which a
change in a module will demand changes in other modules. We refer the parameter
which indicates this rate as «. This parameter should be a factor in such a way
the higher its value, the higher the “contamination rate”.

We use the term “decontamination rate” to designate the rate with which a
change in a module will be carried out without demanding changes in other mod-
ules. We refer the parameter which indicates this rate as 8. This parameter should
be a factor in such a way the higher its value, the higher the “decontamination
rate”.

In state ¢, the probability of going to state ¢ + 1 is proportional to:

— the “contamination rate”, a.

— the number of modules which are consistent, n — i, because the higher the
number of consistent modules, the higher the chance of at least one of them
turns tnconsistent.

— the number of modules which are inconsistent, i, because the higher the num-
ber of inconsistent modules, the higher the chance of other module in the
system turns tnconsistent too.

A Model for Estimating Change Propagation in Software 7

1 2 3 4 n-1 n 0
1 0 a 0 0 0 0 0 | 1-q
2 1q, | 0 a 0 0 0 0 0 12 3 s Mon | oo
3 0 1-q; 0 o 0 0 0 0 1
4 0 0 1q, | 0 0 0 0 z
4 A B
n-1 0 0 0 0 |1gwn| O Qs 0
n-1
n 0 0 0 0 0 1 0 0
n
0 0 0 0 0 0 0 0 1 o o 0

Fig. 2 The probability matrix.

— the connectivity of the system. In this context, connectivity is referred to as
the rate of existing connections among modules in the software system. The
higher the connectivity of the system, the higher the chance of a change in a
module affecting other modules. We refer the parameter which represents the
connectivity among modules within a system as ¢. For instance, in a system
with ¢ = 0.5, there are 50% of the possible connections between modules,
whereas a system with ¢ = 1 is a totally connected system.

Thus, from a state i, the rate of changing to state ¢ + 1 is proportional to
¢ a(n—1)i.

In state ¢, the rate of going to state ¢ — 1 is proportional to:

— the “decontamination rate”, (.
— the number of inconsistent modules, because the higher the number of incon-
ststent modules, the higher the probability that one of them turns consistent;

Thus, from a state i, the rate of changing to state i — 1 is proportional to S i .
As the sum of p; ;11 and p;i—1, i € {1,2,3,...,n — 1}, must be equal to 1,
Equations 1 and 2 are, then, defined.

. ad(n—i)i
Pijit1 = ap(n —1i)i + Bi (1)

V.)
ap(n —1i)i + Bi

The purpose of this work it to define a method to compute the number of steps
a process will take to go from state i to the absorbing state, i.e., the number of
steps it will take until the change process reaches the equilibrium.

Theorem 1, described by Grinstead and Snell. (1991), defines the estimated
number of steps a Markov Chain will take to reach the absorbing state when the
chain is in state ¢. In order to apply this theorem, a (n + 1) X (n + 1) matrix of
probabilities, where n is the number of modules in the system, must be constructed.
In this matrix, the absorbing state corresponds to the last line and to the last
column of the matrix. Hence, the matrix of probabilities, P = (p;), for the problem
of change propagation in software is filled as shown in Figure 2. The resulting
matrix has four regions: A is a n X n matrix; 0 is a row vector with all elements
equal to zero; I is the identity matrix; and B is a column vector whose first element
can be nonzero, but the others can not. The theorem is defined as follows.

Pii—1 =

8 Kecia A. M. Ferreira et al.

6 modules

= (n-2)2n-2)

_ (h-1)X2 x4 . X3 . X1 s
1+108+40& +120% + 240 & +240 &
3"3 d’ i M 1 (" .
2+18“+G4§j+168§3+ 4240 &
6 X2 7 .)
3+243 +764 +1§0“ +288 2% 14240 &
4 X1y)
4+28¢ +augh’+180‘—;§+288%+240%

2 :

5+302 +80% 180 & |+|288 & 1+240 &

| 641302 4809 11180 & [+(288 & 1+(240 % | |

Fig. 3 The pattern of the expressions.

Theorem 1 Let i be a state of the chain. Let E(t;) be the number of estimated
steps before the chain be absorbed, when the chain starts in state i. Let E be the
column vector whose i-th entry is E(t;). Thus, E = Nc, where N = (I — A)™!,
and c is a column vector whose entries are equal to 1.

Applying the theorem, we have Equation 3 as result. The #th position of the
vector E, E(t;), corresponds to the mean number of steps which the chain will
take until it reaches the absorbing state, when the chain starts in state i. In the
context of change propagation, F(t;) represents the number of change steps that a
change process will take to reach the equilibrium state when ¢ modules of a software
system are initially changed.

E(tl) 1

E(tg) 1
Bls) | =@q-a)*| ! 3)

Etn) 1
o~ Llen— k=n—2 k-1 m—k—
Bn, 1) = 1200)2 O S -
(4)

k=n—2
N . L (n—i—1)arklgnk-l

E(n,i) =1+ E(n,i—1) + kgl 2(n —1) =it i) Gk (5)

Using Matlab, we calculated the vector E for all n € {4,5,6,...,11,20,25}. The
results of this computation are shown Appendix A. From the analysis of these
results, we observed a pattern formation in the polynomials. Figure 3 shows the

A Model for Estimating Change Propagation in Software 9

polynomials for software system with six modules, n = 6, and indicates the pat-
tern of the expressions. This pattern was also observed in the polynomials for all
n e {4,5,6,...,11,20,25}. From this observation, we analytically defined a generic
formula which represents the pattern formation of those polynomials, that are the
solution for Equation 3. The generic formula is given by Equations 4 and 5. Those
equations are, then, the solution of the proposed model®. For simplicity, we call
them the K3B model.

The K3B model show that the number of change steps is given as a function
of the relation %)‘ When ¢ = 0, there are no connections between modules within
the software system. In this case, the resultant number of change steps will be 4,
which is the number of modules that will be initially changed. This is the expected
result, because, in that situation, there will be no change propagation. The same
occurs when a = 0, which means that the “contamination rate” is zero.

In a system with connections between its modules, i.e., when ¢ > 0, the best
case occurs when a and ¢ have a very low value, and 8 has a high value. In this
case, the number of change steps tends to 1.

The worst case occurs when a and ¢ have high values, and S has a value near
to 0. In this case, the number of change steps is explosive, which means that the
problem of changing a software system may be intractable.

The K3B model are given in terms of factorial. Logarithmic transformation
of the formula is a way to overcome overflow problems in the implementation of
K3B. The factorial function can be generalized to real numbers by the Gamma
function (represented by I') as shown in Equation 6. The natural logarithmic of n!
corresponds to the natural logarithmic of I'(n + 1), referenced as Ingamma, which
can be directly calculated. There are some available implementations of ingamma
for different programming languages. An implementation of Ingamma in Java is
provided by the Weka project?.

nl = D(n+1) = /OOO fretar (6)

3 An Implementation of K3B for Object-Oriented Programs

In this section, we present an implementation of K3B for object-oriented pro-
grams®. Object-oriented systems are made up of classes which relate one to an-
other. We shall refer to classes as modules.

K3B has as entry five parameters: ¢, the connectivity of the system; «, the
“contamination rate” in the system; 3, the “decontamination rate” of the system:;
n, the total number of classes; and ¢, the number of classes that will be initially
modified. The definition of K3B does not specify which metrics should be repre-
sented by parameters ¢, a and 3, however, we elected three well-known software
metrics to represent those parameters.

1 The formula was defined based on the resultant polynomials for n € {4,5,6, ...,11,20, 25}.
Analyzing data for values of n > 25 manually was not viable.

2 http://www.cs.waikato.ac.nz/ml/weka/

3 Our implementation of K3B was introduced in Connecta Project and it is available in
http://homepages.dcc.ufmg.br/~ kecia/connecta.htm.

10 Kecia A. M. Ferreira et al.

The parameter @ must be a factor in such a way as higher the factor, as higher
the “contamination rate”, i.e, the change propagation. The parameter 8 must lead
to the opposite effect. To choose the metrics for a and 3, we considered modularity
as one of the most relevant factors of software quality and software maintenance
(Meyer 1997). Moreover, coupling among modules and module cohesion are consid-
ered the main forces that govern modularity (Myers 1975; Pressman 2009). Thus,
based on those assumption, we consider that coupling metrics play the role of «,
and cohesion metrics of 5. Nevertheless, K3B does not exclude the use of other
metrics for a and §, provided the chosen metric for o corresponds to a factor
which may contribute to favor change propagation, and the chosen metric for
corresponds to a factor which may contribute to prevent change propagation.

3.1 A metric for ¢

The ¢ parameter represents the connectivity of the system. In the K3B model, the
software system is represented as a directed graph, i.e, a network. The connectivity
refers to the density of the network, that is, the percentage of existing connections
on it. Abreu and Carapuca (1994) defined a software metric that aims to measure
such property in object-oriented software systems. This metric, called COF (cou-
pling factor), is given by ¢/(n? —n), where ¢ is the number of connections among
the classes, and n is the number of classes in the system. In our implementation of
K3B, we have calculated ¢ according to the metric COF. To generate the graph
which represents the object-oriented program, we considered the following types of
connections between classes: inheritance, use of method and use of fields. However,
the definition of the model does not limit the types of connections to be considered
in the implementation of the model.

3.2 A metric for 8

In our implementation of K3B, we used the metric Cohesion by Responsibility
(COR) (Ferreira 2011) for 8. This metric is given by 1/C, where C' is the number
of disjoint sets of methods within the class. Each of these sets consists of similar
methods. Two methods are similar when they use a common field or a common
method of the class. The similarity relation is transitive in the sense that if a
method a is similar to a method b, and b is similar to a method ¢, then a is
also similar to c¢. Each set defines a class responsibility. For example, when there
are only two sets in a class, COR is 0.5. This indicates that this class has two
responsibilities. If there is only one set in a class, COR will result in 1, which indi-
cates a high cohesion. Ferreira et al (2011) carried out an experimental evaluation
of four cohesion metrics: LCOM (lack of cohesion in methods) (Chidamber and
Kemerer 1994), LCOM4 (Hitz and Montazeri 1995), TCC (tight class cohesion)
(Bieman and Kang 1995) and COR. Findings of that work showed that COR may
be used as a good indicator of class cohesion and it is useful in identifying classes
with design deviance. Based on these findings, we have chosen to use COR in our
implementation of K3B.

A Model for Estimating Change Propagation in Software 11

Cohesion metrics are usually defined to evaluate a single class. As 3 is a value
taken for the system as whole, we computed the mean cohesion in the system as
. We applied this approach in our implementation of K3B.

3.3 A metric for «

Coupling is the level of interdependence among modules of a system. If a class
depends on another, there is a connection between them. The nature of this con-
nection may define the coupling level between the classes. For instance, the use of
public fields may cause strong coupling between classes.

We consider four main types of dependence among classes. To each of them,
we associated a weight from 0 to 1, because the value is supposed to represent
«, that is a rate. The weights of this scale were set based on the idea that the
higher the coupling, the higher should its weight be. The highest weight we used
were 0.2. We carried out previous tests with K3B formulae in order to calibrate
those weights. The value 0.2 was selected to be used in our implementation as the
highest value for a because bigger values had led to huge values of K3B, what we
assumed to be unrealistic*. The types of connections and its weights are described
as follows.

— Use of field: this type of coupling occurs when a class uses a field of another,
what might lead to strong coupling between the classes. For this reason, the
weight associated to this type of coupling is the highest in this scale: 0.2.

— Inheritance: it occurs when a class extends another. In languages such as Java,
when a class implements an interface, it could also be considered an instance
of this type of coupling. This kind of relationship leads to a strong dependence
among classes, but not as high as the connection by the use of field. The weight
associated to this type of connection should be less than that associated to
connection by the use of field. We used 0.1 as the weight for connection by
inheritance.

— Reference: when a class uses a method of another and passes a reference to some
object to this method as parameter, there is a relevant degree of dependence
among these classes, because changing the object inside the called method
would impact on the caller. We used the weight 0.1 for this kind of coupling.

— Use of method: it occurs when a class uses a method of another and only
passes non-object data to this method as parameter. This is the lowest level
of coupling among classes, but it still represents some level of dependence. We
used 0.05 as the weight for this level of coupling.

A class may use another one in many ways, resulting in different types of
connections. In this case, we considered the connection with the highest weight.
As «a is a single value, which represents a property of the system as whole, we used
the mean value of the weights of all the connections as a.

4 Geipel and Schweitzer (2012) have found that the probability that two interconnected
classes have been modified together is at least once is 0.33, with a standard deviation of 0.12.
The weights we used in our study are near to those.

12 Kecia A. M. Ferreira et al.

3.4 Computing K3B

To implement K3B, we represent an object-oriented program as a weighted di-
rected graph, where: a node represents a class with its corresponding metric COR;
an edge corresponds to a connection between two classes, and it has a weight that
represents the type of the connection. We compute COF as ¢, the mean weights
of the edges as «, and the mean value of COR of the nodes as 3. The evaluation
of K3B performed in this work is based on the implementation of K3B described
in this section.

4 Evaluation of K3B

In this section we evaluate the proposed model. We compare the results gener-
ated by our implementation of K3B with: (1) data from simulation of change
propagation in Java programs; and (2) data of a previous study that empirically
investigated the change propagation in real scenarios of modification process of
Java projects.

4.1 K3B x Simulation

We developed a tool (Ferreira 2011) which simulates a given type of change the
classes of a program, and counts the number of change steps resulting from each
initial change. The tool analyzes Java software given its bytecode, the type of
change which will be simulated, and the number of classes which will suffer changes
initially. The tool simulates all the possible changes in the program with the given
pattern and, for each of these instances of change, it counts the number of change
steps and returns the average number of change steps.

The evaluation of K3B was performed according to the following steps. Initially,
for a given program, K3B estimates the number of change steps for 1 < i < n,
where ¢ is the number of classes which will be initially changed, and n is the total
number of classes that compose the program. For each value of i, we performed
the simulation of a given type of change. We, then, compared the value computed
by K3B with the resultant value of the simulation. The hypothesis investigated in
this evaluation is that K3B estimates the mean number of change steps in object-
oriented software systems. In order to verify this hypothesis, we investigated if
there is correlation between the values generated by K3B and the results of the
simulation. We used the Pearson correlation to perform such analysis. In this
experiment, we used 37 versions of 11 open-source software systems.

4.1.1 The Evaluated Type of Change

The aim of this evaluation is to verify the accuracy of K3B in estimating change
propagation. A change in a module can “contaminate” the other ones to which it
is connected. This process dynamics is applicable to any modification, regardless
of the type of the modification performed in the module interfaces. Hence, for
the purpose of simulation, it is necessary just a situation which represents this

A Model for Estimating Change Propagation in Software 13

Require: i > 1 {the number of classes which will be changed initially}
Ensure: meanStepChange > 0 {the mean number of steps}
visited = empty {A set of classes.}
P = empty {A set of methods and its resulting number of change steps}
for all class C do
for all method M defined in C do
visited.insert(C);
result = countStepsMethod (M, visited);
P.insert(M, result);
end for
end for
for all combination Comb of i methods from distinct classes do
for all method M of Comb do
sumStepsComb += P.getSteps(M);
end for
totComb++;
sumSteps += sumStepsComb;
sumStepsComb = 0;
end for
meanStepChange = sumSteps / totComby;
return meanStepChange

Fig. 4 Simulation of Change Propagation - meanStep Change

process, i.e., it is enough to perform a change in a module and see how it ripples
successfully to other ones.

Changing the parameter list of a given public method implies that the contract
(Meyer 1997) of the class will change necessarily. In particular, when a parameter
is added to the parameter list of a method, there are two main ways to generate
the new method’s argument in the caller methods: the own caller method is able
to provide the new data, or it may demand this new data will be passed to it as
a parameter. Hence, a change in a parameter list of a method may be propagated
to other ones.

Adding private fields may demand accessor methods. In the case of adding
public fields, accessor methods are not needed. In both cases, the classes which
use the changed class also may have to be changed in order to provide data for the
new fields. In these situations, there are two main possibilities: the own class is
able to provide the data, or it may demand the data be generated by other classes
and, then, sent to it as a parameter. The effect of this type of change and the
effect of changing parameter list are, hence, similar.

Fowler (1999) describes a set of changes that can be performed in a object-
oriented software system, that is known as code refactoring. For instance, add
parameter, parametrize method, collapse hierarchy and extract class may lead to
change in the contract of the affected class. The propagation effects of those types
of change are similar to change of parameter list. Therefore, for the purpose of sim-
ulating the effect of a change propagating throughout the system, a single type of
change is sufficient. We have chosen the change of parameter list to simulate change
propagation. Although this is not the only possible change in object-oriented soft-
ware, it is good enough to represent the change propagation effect.

14 Kecia A. M. Ferreira et al.

Require: M {the method which will be changed initially}
Require: visited {a set of classes}
Ensure: p > 0 {the total number of change steps}
p=0;
for all class C which uses M do
if C is not the class of M then
if C contains a method X which uses M then
pt++;
if C is not in visited then
visited.insert(C);
for all method X in C which uses M do
p+= countSteps(X, visited);
end for
end if
end if
else
for all method X in C which uses M do
p += countSteps(X,visited);
end for
end if
end for
return p

Fig. 5 Simulation of Change Propagation - countStepsMethod

4.1.2 The Algorithm of the Simulation of Change Propagation

The simulation of the change propagation is based on the call flow among methods
of a program. When a method m2 calls a method m1, and m1 has its parameter
list changed, it is possible that m2 will have its parameter list also changed. This
might occur because there are two main ways for m2 produce the new parameters
to m1: m2 will produce the new parameter itself, or m2 also will need to receive
the new parameter from some other object. As in the simulation it is not possible
to define how m2 can produce the new parameter itself, we consider the worst
case in the simulation: the parameter list of m2 also will be changed. Therefore,
the propagation of a change in m1 is counted until a method which is not called
by any other method is reached. The algorithms of Figures 4 and 5 describe the
computation of the number of change steps when the parameter list of a method
is changed.

The algorithm simulates all the possibilities of change propagation in the soft-
ware system. To compute the change propagation for i = 1, i.e, when one class is
changed, the simulation of change propagation is carried out for each method of
the classes. At the end of the computation, the mean value of the partial results
is calculated. This result represents the mean number of change steps when one
class is changed. To simulate the effect of change propagation for ¢ > 1, the al-
gorithm takes ¢ classes from the software program a time, making a combination
of i methods from them. The result of each partial simulation is the sum of the
change impact of the methods. After considering all the combination of 4 classes,
the simulation ends. The final result of the simulation is the average of the partial
results.

A Model for Estimating Change Propagation in Software 15

JUnit 3.4 JUnit 3.4

Sim'=118*K3B +0,014

at 1 Sim'=1,17 " K38 +003
&

Sim3)
Sim(5)

3 4
1383 138(5)

Fig. 6 Correlation between K3B and the data from simulation, for ¢ = 3 and ¢ = 5 - JUnit
3.4

4.1.8 Method of the Evaluation

To evaluate K3B, we verified if there is correlation between the values produced by
K3B and the resultant values of the simulation. The hypothesis investigated is that
K3B estimates the real value, hence, there is a positive correlation between K3B
values and the data from simulation. We performed this analysis for the 37 software
versions used in this experiment. For each of these programs, we computed the
K3B value for different values of ¢ (the initial number of modules in inconsistent
state), and we collected the corresponding values in the simulation. Each of these
observations resulted in a regression line Simulated = m x K3B + b.

If there is a positive correlation between K3B and the values given by the
simulation, and if the values of m and b are slightly different, or invariant, among
the resultant regression lines for distinct software systems, it is possible to conclude
that, regardless the software system, K3B estimates the real number of change
steps properly. Moreover, the simulation value can be calculated by multiplying
K3B values by m and, then, adding the result with b. On the other hand, if there
is a significant difference among the values of m and among the values of b in the
resultant regression lines, it means that, though K3B can predict the real value,
the regression line is sensitive to the evaluated software. In this situation, it would
not be possible to define general values for m and b to obtain the real value using
the K3B formulae.

Therefore, besides the verification of correlation between K3B and the values
given by the simulation, we analyzed the behavior of the values of m and b among
the regression lines. The hypothesis investigated in this analysis is that the value
of K3B multiplied by a known constant will result in the real value, regardless the
software system.

4.1.4 Results

In this section, we present and discuss the results of the evaluation of K3B. For
simplicity, we use the term K3B(i) to denote the value given by K3B for a program
when i of its classes are initially changed. In the same way, we use the term Sim/(7)
to denote the value given by the change simulation algorithm considering that ¢
classes of the program are initially changed.

Kecia A. M. Ferreira et al.

16

T0°0 | €81 | 896666660 20’8 9e°g 892 8€°¥ 26T 7T 7691 0£z | 800°0 | g¥L0 | 6200 T8F
10°0- | 9L°T | 976666660 §L°L ar'g 892 ov'y ¥6'T LY T otgt 88T | 010°0 | @¥L'0 | 200 oy
20°0- | 19T | ¥P666666°0 089 €97 13T £T°¥ 28 Tr'l vT6 26 | 0z00 | €920 | €200 0y
10°0- | 29T | 966666660 $0°L oL¥ 9e'T Ty 18°C A 965 10T | 8100 | €08°0 | 820°0 8'€
T00 | 8T'T | 896666660 967 Te'e L9°T ey 18°C T qre 8. | €200 | 918°0 | 82070 ve nunr
20°0- | 80T | ¥EL66666°0 gL9 (g 9T°T 629 127 e 10T LTT | 08070 | 6990 | €0T°0 e 1o
G0°0- | 90°T 106666660 089 £9°F 92°2 av'9 cey LTT 176 60T | £20°0 | 0690 | S0T°0 vET0
20°0- | L0'T | 628666660 €79 627 sre v0'9 S0y £0°¢ €28 v6 | ¥20'0 | 189°0 | ¥0T'0 92°1°0
€0°0- | SO'T | 6€866666°0 9.9 197 922 €79 1€V LT'T ovL €8 | 8200 | 899°0 | 80T°0 0210
70°0- | 80'T | 806666660 68°9 09°'% 0e'e 9 cey LT L9 08 | €800 | L¥L'0 | TIIT'0 vLILOo HOSI
10°0- | 60 | 68866666°0 LL0L 8T'g 65'¢ 028 879 v 61€¢ 0.z | 210°0 | 65°0 | €80°0 7901
20°0- | L8°0 | 676666660 67°9 £€°7 a4 LyL 66’7 05 9561 81 | ¥10°0 | 9290 | T80°0 £90T
€0°0- | 68°0 | 096666660 79 LTy [1L e8'v Tr'e 8081 €0¢ | S10°0 | 85°0 | 180°0 1901
10°0- | €6°0 | 818666660 209 07 10T 18°9 gey 81°¢ 2991 981 | S10°0 | 085°0 | 620°0 ceot
20°0- | 060 | ¥I666666°0 869 99°¥% €€ LLL 0z°g 19°C LOTT TLT | LT0°0 | 9€5°0 | 980°0 20T TL
92°0 | 09'T | £0LE€966°0 L€°21 206 187 Le7L °6'y 9T 8£98 969 | ¥00°0 | 669°0 | S0T°0 1e sdnosn
000 | ¥TT | 966666660 PITT VYL €€ 66'8 10°9 10°€ Teee ST | 20070 | 099°0 | 6010 01 vavy
€2°0- | 29T | 9S8TES666°0 618 99°¢ e8°% v6°€ L6°T 961€T YOTT | €00°0 | 2190 | 180°0 00T
000 | 8¥'T | 00000000 T 8¢'8 8¢°g 6L 99°¢ L2°€ 88°1 7609 ¥Lg | ¥00°0 | 6890 | €800 0°0°T sga0doy
20°0- | LS'T | 866666660 0z°8 Lve €L €2°¢ 67°¢ qLT 06L1 gre | 600°0 | 0TL°0 | 9600 070 adsop
gro | 111 T7L8L666°0 10°8 Lve g vIL oL¥ 86T £89¢8T SITT | €00°0 | ¥8G°0 | 98070 Te
0 | UL | 166666660 10°8 ve'g L9°g 669 99°F £€°T 85€0T 996 | £00°0 | ¥82°0 | €800 0'€ | ewuseqH
a w | (g)ug | (2)uns | (Duusg ((e)de> |(2)de> | (1)FE3 | sPoulaN | sosse[D [o 0 | uoisiep [uweaBord

€ > 1> T — uolje[NUIS 9} WOIJ ©Iep pue g3 Usemiaq uostredwio) T 9[qel,

17

A Model for Estimating Change Propagation in Software

000 | 9T | 00000000°T 696 97°9 €3¢ 05y 00°€ 05°T 9€£9 076 | T00°0 | 66L°0 | 6,0°0 9°C

T0°0- | 68 | 166666660 00°0T L9°9 €€ L8 26T or'T £01¢ 63L | £00°0 | 9¥L°0 | 6200 0z

10°0- | 46 | 000000001 9T'TT 118 90°'% 0T’y €2°¢ Le'T 6891 vey | ¥00°0 | 982°0 | 2L0°0 01 1ouimbg

10°0- | 9T | 00000000°T 6721 £€'8 or'¥ 9’8 05°g aLg 8LOVT ggel | €00°0 | g0L0 | 218070 [

T0°0- | 46'T | 00000000°T 1TVT 876 VLT ¥TL €87 Tr'e 186 9081 | €00°0 | 0.0 | 18070 0°8°g

20°0- | 09°€ | 966666660 0192 TP LT L8 9L 867 67T (444 €6€ | L0070 | 879°0 | 8600 9°0 Y]
L0°0 | LT'E | S8I866666°0 7918 87 7T 9T L 18°9 Ve 13T 9g9v 809 | 90070 | ¥E8°0 | 2600 €16

¥I0 | gL€ | ©0966666°0 2058 L2791 £7'8 69°9 T’y €32 967¢ 8G% | 20070 | 0€8°0 | $60°0 8c

000 | ¥6'€ | 696666660 €961 vO'ET €99 96'F €€ 99°T L608 LTG | ¥00°0 | 1890 | 880°0 0°g

9T'0 | ST | ¥EF9I6666°0 0g'8 v9'g 882 99°% ere 96T 81¥ €. | T€00 | €80 | 080°0 L1 | asbouopy
€1°0 | T2'T | ¥0L96666°0 97’8 gL'g €62 L8°F% 9z°¢ v9'L v9g v9 | L£00 | L9270 | 080°0 | ©3099'L 210
000 | LT'T | 086666660 89°'TT 612 06°€ 966 799 ze'e 809. €66 | ¥00°0 | 089°0 | 2600 01°g

000 | 2T | L6666666°0 86 TT TL L 98°¢ 19°6 vE9 Lre 8€L9 806 | ¥00°0 | 2€9°0 | 2600 00T wisbor
100 | €8¢ | 96666666°0 9791 201t £9°¢ LE°L €67 L¥'T vE9 €7T | 920°0 | 0920 | £60°0 01

TT'0- | 84T | TI8LE6660 89'8 69°¢ €8T 88°F L3¢ 99°1 6T 6¢ | 9900 | 982°0 | 160°0 g0 | eyopios
q w 1 | (g)ung | ()uns | (Duus [(e)dedM ((2)ged | (1)E83 | SPOUleN | sesse[D [o 0 | uoisiop [uweiZold

€ > 1> T — uolje[nWIS 9} WOIJ ©)ep pue gy usamiaq uostredwio)) g 9[qel,

Kecia A. M. Ferreira et al.

18

ST°0 |[L9°T | ¥€6506666°0 99°€1 60°TT '8 SL'g £6'C S0'8 a¥'9 L8'F 9z'e ¥9'T ®j0q9 1 |uabvuvpyaaop
€2°0- |28'1 | $E€6506666°0 a1 6% 11T 89°8 69°'G €8°C z0'8 9¥°9 88V LT°€ 991 z0 DYooy
€0°0 |[LI'T | 98%L66666'0 6T°8 8¢'9 96'% ze'e 29T 66'9 09°'¢ 127 182 1 v'e nunr
q w 1 | (@uis | (Puas | (e)uns | (2)urs | (Dwis [(g)ged |(p)aed |(e)dex ((2)dex |(1)ded | uoisisp wreaSoxd

¥00'0- |L6'C | 9666666660 0z'9T 9T°ZIT T8 90°¥% 9¥'g or'¥ €L°T LE°T 01 194umbg

200 |€2°T | 88666666'0 ¢8'1T 9¥°91 TO'IT €9°¢ 6L°6 LE°L €6V Lve 01 IR

S0°0- |80'T | €9%266666°0 LT°6 689 09V 0e'e ya'8 jadt] (4384 L1C PI'T°0 HOSI

€0°0- |06°0 | S€2866666°0 62°6 86°9 99'% €€°T €€°01 LLL 0z'g 19'C 180T TNL

q w 1 | (Puas | (e)uns | (R)urs | (Duwis [(p)aedt |(e)dged |(2)ded |(1)dex | uorsasp weaSoag

G =1 puR = 2 — UOIJR[NWIS 97} WOIJ v)ep pue ggy Ueamjaq uosiredwio) ¢ o[qeq,

A Model for Estimating Change Propagation in Software 19

The evaluation was limited to 1 < ¢ < 3 because the simulation is a high
cost process. The algorithm simulates all the possibilities of change propagation.
Therefore, its complexity is exponential. Some simulations for ¢ = 3 took more
than 24 hours of computer processing time. In four programs, the execution of the
simulation was performed for ¢ = 4, and in other three programs, the execution of
the simulation was performed for ¢ = 5. Some of these simulations have consumed
about three days. For this reason, performing the simulation for values of i higher
than five is impracticable.

Tables 1 and 2 show the data from the analysis for ¢ = 3. Columns a e (8
correspond to the mean class coupling and the mean class cohesion of the system,
respectively. Column ¢ is the COF metric of the system. Columns K3B(i) and
Sim(i) are the values of K3B and the values given by the simulation, respectively.
Column 7 is the correlation coefficient between K3B and the corresponding value
observed in the simulation. Columns m and b are the coefficients of the regression
line Simulated = m « K3B + b.

The results for 1 < i < 4 and 1 < ¢ < 5 are reported in Table 3. From the
gathered data, we observed that these results are very close to those for 1 <14 < 3.
An example of this situation is illustrated in Figure 6, which shows the result of
the program JUnit, version 3.4, for i = 3 and ¢ = 5. Although these results are not
conclusive, they suggest that those for 1 < i < 3 can be considered as significant.

The analysis of the data reported in Tables 1, 2 and 3 shows that:

— In all cases, correlation r is nearly 1. The mean of the values of r is 0.99992, with
standard deviation of 0.0005. This result indicates a strong correlation between
K3B and the observed data in the simulation. Despite the small number of
points used in the correlation analysis, this finding reveals that K3B indeed
predicts the values given by the simulation.

— The values of the coefficients m are very close. The same occurs with the
coefficient b. The mean values of these coefficients and their respective 95%
confidence intervals are such as:

— the mean value of m is 1.7, with standard deviation of 0.82. The 95%
confidence interval of the mean is [1.46; 1.92]. This indicates that the value
observed in a simulation is 1.92 times larger than the value given by K3B
at most;

— the mean value of b is 0.02, with standard deviation of 0.14. The 95% con-
fidence interval of the mean is [-0.02; 0.06]. This indicates that, in general,
the value of b is near to 0. Thus, the value given by the simulation can be
obtained by adjusting the value of K3B with the known mean of m.

— Equation 7 is the mean regression line between the values of K3B and the
observed data from the simulation.

Simulated = 1.7« K3B (7

This finding suggests that the value given by K3B can indeed be used to
predict the value given by the simulation. Moreover, as the value of m is quite
small, the value given by K3B and the value given by the simulation have the
same magnitude. Assuming that the simulation is a good expression of the real
scenarios, the K3B model can be, hence, used to predict the number of change
steps in software systems.

20 Kecia A. M. Ferreira et al.

The K3B model is based on the probability of a change be propagated in
the system. In our implementation of K3B, such probabilities were computed in
terms of factors such as level of class coupling, cohesion and connectivity. The
simulation of change propagation used in the evaluation of K3B does not directly
consider cohesion and level of coupling. In the simulation, a change in a method is
supposed to be always propagated to all the other methods which use the changed
method. The simulation is, hence, more pessimist than K3B. The achieved results
are consistent with this, because they show that the values given by the simulation
are larger than those given by K3B, as expected.

Simulation is a high-cost process. In some cases, the simulation time is infea-
sible. For instance, the simulation of change of four classes (i = 4) from JSCH,
which has only 80 classes and 671 methods, took 34 minutes. The simulation of
change of four classes from Squirrel, which has only 424 classes and 1589 methods,
took more than 24 hours. As the implementation of K3B is simple and it computes
the result promptly, K3B is an efficient candidate to predict the number of change
steps in software systems.

The systems considered in this study have the following mean parameters for
K3B: ¢ = 0.009, o = 0.085, 3 = 0.700. Hence, in general, there is less than 1%
of the connections among the classes in the system. The coupling among classes
is near to 0.1, which is the corresponding weight of coupling by inheritance or by
reference. The mean cohesion of the classes is 0.7, which corresponds to a high
cohesion. These values suggest that the software systems considered in this study
have good internal quality in general, regarding coupling, cohesion and level of
connectivity. This might be the reason why the K3B values obtained in this study
are low. However, a deeper investigation would be necessary to state that these
systems actually have high internal quality. Even in software systems with such
internal characteristics, K3B may be of help because not always the developer will
be able to estimate the impact of the changes he or she has to accomplish. The
importance of predicting change impact would be even greater in systems with
low internal quality.

4.2 K3B x Historical Data

In this section, we compare the results of K3B with historical data that consider
the dependencies between modules. To carry out this comparison, we considered
the results of the empirical study of Geipel and Schweitzer (2012) that investi-
gated the role of class dependence in change propagation. They have shown that
dependencies among classes significantly raise the chance of change propagation.

We decided to compare our model with the results of their study for many
reasons: the sample they used is large; they analyzed open-source Java projects,
that is the target programming language of our tool; the way they represented the
dependencies between classes is similar to ours; and they provided detailed data
about the results in their paper so that we could carry out a comparison with our
proposal.

Following, we describe the terminology used by Geipel and Schweitzer (2012)
in their study:

— co-change: it is an event that “comprises all classes whose changes have been
committed at exactly the same time by exactly the same author”. This event

A Model for Estimating Change Propagation in Software 21

is considered by them as a change propagation occurrence. The change data
consist of CVS logs.

— Dependence: they consider that I depends on J when: I extends or implements
J; I uses J as a member or a variable; or I references or calls a method of J.
They refer those types of dependencies as A, B, and C, respectively.

— Pp: the probability that two classes have changed together at least once, given
that a dependence exists between them.

— Ppa: the probability that two classes have changed together at least once,
given that a dependence of type A exists between them.

— Ppb: the probability that two classes have changed together at least once, given
that a dependence of type B exists between them.

— Ppc: the probability that two classes have changed together at least once, given
that a dependence of type C exists between them.

4.2.1 Method of the Fvaluation

The results of the study of Geipel and Schweitzer (2012) are reported in terms of
probabilities, whereas K3B gives the absolute number of change steps. Although
those results are reported in different units, we consider comparing them may put
K3B in perspective, since the data of the study of Geipel and Schweitzer (2012)
are from real scenarios of modification process. For the purpose of comparison, we
considered the value (K3B(i))/i, that is a relative K3B, instead of K3B(i), which
is the absolute value of K3B. We made this adjustment because K3B depends
on the size of the system and, then, comparing it with a probability, which is a
relative number, would be misleading.

The data analyzed by Geipel and Schweitzer (2012) are from 35 projects and
were collected in 2008. Their paper reports only a date for each project, and it
does not report the release numbers. We faced some problems when recovering the
versions of the projects: some of them are not available anymore, and, for most of
them, it was not possible to identify the proper files to analyze based only in the
date reported in the study of Geipel and Schweitzer (2012). Aiming to mitigate
the threats to our analysis, we only considered the projects for which we could
clearly identify the release close to the date reported by Geipel and Schweitzer
(2012). This selection resulted in ten projects. We, then, gathered the K3B values
of them.

To compare the results of K3B with the historical data, we analyzed the cor-
relation among the probabilities of co-change obtained by Geipel and Schweitzer
(2012) and the values of K3B(1), K3B(2), K3B(n/2)/(n/2), and K3B(n)/n. We
used Pearson and Spearman correlation in our analysis, because the data distri-
bution is unknown.

4.2.2 Results

Table 4 shows the data of the Java projects considered in this work, in which
column 7 is the number of classes. Table 5 shows the Pearson correlation between
K3B and the co-change data, and Table 6, the Spearman correlation. Both re-
sults indicate that K3B(i) is related to changes performed in real scenarios of
modification process.

22 Kecia A. M. Ferreira et al.

Table 4 Historical co-change data and K3B.

Project n Pp Ppa| Ppb Ppc K3B(1)| K3B(2)| K3B(n/2)/(n/2) K3B(n)/n
aspectj 31 57.8 76.0 60.5 55.2 3.13 6.13 2.33 1.83
fudaa 15987 34.5 48.8 37.3 31.1 3.02 6.05 2.26 1.78
jpox 732 35.1 57.1 41.9 30.5 2.77 5.54 2.12 1.70
azureus 5446 38.2 45.6 38.2 36.9 1.81 3.62 1.56 1.36
rodin-b-sharp 166 21.8 47.0 18.8 18.2 1.75 3.51 1.53 1.34
university 388 26.8 38.6 12.0 28.6 1.73 3.46 1.51 1.33
jaffa 538 29.5 28.3 28.0 29.9 1.58 3.17 1.41 1.76
squirrel 832 27.4 34.7 28.9 25.3 1.47 2.96 1.34 1.22
xmsf 79 34.8 29.1 46.4 34.3 1.46 2.91 1.33 1.21
hibernate 251 45.6 72.9 56.9 39.4 1.99 3.98 1.56 1.55

Table 5 Pearson correlation among co-change data and K3B values.

K3B(1)] K3B(2)] K3B(n/2)/(n/2) | K3B(n)/n

Pp 0.60 0.59 0.57 0.52
Ppa 0.70 0.69 0.66 0.51
Ppb 0.49 0.48 0.45 0.42
Ppc 0.52 0.51 0.50 0.47

The correlation between K3B and Pp, when performing a change in one class
(i = 1), is 0.6, according Pearson, and 0.56, according Spearman. This result
indicates a positive correlation between K3B and the co-change data, i.e, the higher
the number of co-changes, the higher the K3B value. From the results, we observe
that the correlation values slightly decrease as i grows. This result might indicate
that K3B precision decreases a little for higher values of .

Geipel and Schweitzer (2012) detailed the co-change data according three types
of dependencies among classes: inheritance, use of variable, and use of methods.
The correlations between K3B and the probability of changes due to use of variable
(Ppsb), and due to use of methods (Pp.) are positive and relevant, near to 0.5.
The correlations found for Ppy, however, are a little lower than Pp.. This result
indicates that K3B can predict the change propagation effect due to use of variables
or methods.

The strongest Pearson correlation, 0.7, appeared between K3B and the prob-
ability of changes due to inheritance (Pp,). Using Spearman, the correlation be-
tween K3B and co-change due to inheritance is even higher, 0.9. These correlations
were the highest we have found in our study. Geipel and Schweitzer (2012) has
noticed inheritance leads to significantly strongest dependencies. This result, then,
suggests that K3B is able to detect the main ripple effect in software systems.

These results refer to a sample of ten Java projects projects. To depict any con-
clusion about the population projects having as basis these results, it is necessary
to use the hypothesis test for the population correlation, denoted by p. We, then,
tested if p = 0, with a significance level of 0,05, i.e., 95%. The hypothesis are: Ho:
p =0, and Hy: p > 0. For the test purposes, we used the Pearson correlation in
the case of K3B(1). The resulting test statistic is ¢ = 2.13, and the critical value
of the test is t.=1,86. As |t| > t., Ho is rejected. We may conclude, then, that
p > 0. The p-value of the test is 0,033, i.e, 97%. The p-value of a test is the lowest
significance level that will lead to reject the null hypotheses. This means that it is
possible to state there is a positive correlation between K3B and co-change.

The co-change data of Geipel and Schweitzer (2012) reflect the change propa-
gation effect in real scenarios. This study compared K3B with such data and found
a positive correlation between them. A consequent conclusion is that K3B is, in
fact, correlated with change propagation effect.

A Model for Estimating Change Propagation in Software 23

Table 6 Spearman correlation among co-change data and K3B values.

K3B(1)] K3B(2)] K3B(n/2)/(n/2) | K3B(n)/n
PD 0.56 0.56 0.55 0.48
Ppa 0.90 0.90 0.85 0.58
PDb 0.44 0.44 0.40 0.32
Ppec 0.51 0.52 0.50 0.44

5 Application of K3B

The proposed model has the following main applications in real scenarios of soft-
ware engineering.

5.1 Estimating change impact

Consider the following scenario. The client requests a change in the system. The
developer performs a preliminary analysis on the system and finds out the classes
that need to be changed in order to attend the request. Based on this evaluation,
the developer defines how much time the activity will take and how much it will
cost. However, during the change process the developer realizes that the activity is
much more complex because changing these classes will impact other classes of the
systems. Moreover, due to the high complexity and the large size of the system, the
developer notices that it is very difficult, or even impossible, to manually determine
the time and the cost of the activity. The K3B model provides an automatic and
simple way for predicting change impact in software systems. The higher the value
of K3B, the greater the number of steps in the modification process. Consequently,
a high value of K3B indicates that high amount of time should be spent in the
activity and that the cost of the software maintenance would be high. Therefore,
both developer and manager may consider K3B to plan the modification process
more properly.

5.2 Refactoring

A high value of K3B indicates that performing change in the software will be
costly. The K3B formulae have as parameters a and [, which represent aspects
that determine the tendency for change propagation in the software system. Thus,
in order to reduce the cost of maintenance, the developer should control these
aspects: reducing « and increasing . In order to reduce the K3B value, and,
hence, to improve the software structure, it is necessary to improve the factors
which lead to high values of K3B. For instance, it could be necessary to improve
the internal structure of the classes in order to increase their cohesion by means
of a better application of the information hiding principle, or a more proper use
of inheritance.

5.3 Comparing software systems

The model may be used to compare systems from the viewpoint of maintainability,
in the aspect of change impact. The K3B curve of the software system is particu-
larly important in this comparison. The K3B curve provides an overview of how

24 Kecia A. M. Ferreira et al.

K3B values of JHoTDraw 7.6 x10* K3B values of Eclipse JDT 3.4
1800 2 T

1600 4 18
1400+
1200

1000

K38()
K38()
-

800
600
400

2001 1 0.2.

0 200 400 600 800 1000 1200 0 500 1000 1500
i i

Fig. 7 The K3B curve of (a) JHotDraw 7.6 and (b) Eclipse JDT 3.4.

the change propagation can grow depending on the number of classes that will
initially be changed.

Figure 7 shows the K3B curve of two Java projects with approximately the
same size, about 1500 classes. By observing the curves, it is possible to notice that
a change of a high number of modules in Eclipse JDT may cause a huge impact
in the software system, when compared to JHotDraw.

6 Related Work

Changeability, the easiness of performing changes in a software system, is a relevant
characteristic of maintainability, especially for environments in which changes are
frequent. Controlling the pervasiveness of change propagation is notably important
for the management of software maintenance. Some works have been carried out
on the topic of change propagation since the early days of Software Engineering
(Myers 1975; Rajlich 1997; Hassan and Holt 2004; German et al 2009; Li et al 2009,
2010). These works use different approaches, such as the analysis of dependence
between modules, the analysis of historical data about changes performed, and
simulation of change propagation (Li et al 2012). Following, we discuss some of
them.

To demonstrate the explosive effect that changes may have on software, Myers
(1975) uses the example of a circuit with 100 lamps, which correspond to modules
in a system. The lamps can assume two states: on and off. A lamp in the on
state corresponds to a module which is suffering a change. A lamp in the off state
corresponds to a module which is not suffering a change. If a lamp is on, the
probability it will be off in the next second is 0.5. An off lamp will keep this
state while it is connected only to off lamps. An off lamp which is connected
to an on lamp will be on in the next second with probability 0.5. The system
reaches the equilibrium when all lamps are off. Starting with all lamps on the
on state, Myers (1975) has determined the time of equilibrium of the circuit in
three configurations: (1) seven seconds, when there are no connections between
the lamps; (2) 20 minutes, when the circuit has 10 groups of 10 lamps, and there
is no connections between the groups, but all lamps within a group are connected
to each other; (3) 1022 years, when all lamps within the circuit are connected one

A Model for Estimating Change Propagation in Software 25

to another. The way we define the modification process in K3B has been inspired
by the circuit metaphor of Myers.

Myers (1975) proposed a model for stability of programs which aims to predict
the number of modules which will be changed due to a change in a random mod-
ule of the software system. The model has a complex algorithm which is based
on probabilities, the internal cohesion of the modules and the coupling between
modules. It was originally proposed for the structured programming paradigm.
Ferreira et al (2008) adapted the model to the object-oriented paradigm.

The model proposed by Chaumun et al (1999) aims to evaluate the impact of
changes in object-oriented software. Their model basically counts the number of
classes which are directly affected by a change in a given class of the system. They
performed a case study to evaluate the model in which they considered a single
type of change: the change of method signature. The target program of the case
study was developed in C++ and consists of 1044 classes. The aim of the case
study was to investigate correlation between the results given by the model for
each class of the system, and the number of methods of the class. However, they
did not report strong correlation between these variables.

A set of heuristics was defined by Hassan and Holt (2004) to predict change
propagation, including the following ones: the analysis of historical co-change data
in order to identify the software entities that have been changed together at the
same time; and the call graphs representing the static dependencies between soft-
ware entities. A simplifying assumption made by them is that each heuristic will
predict the ripple effect of a change carried out on a single software entity, i. e., the
heuristics disregard that a change can start in more than one software entity. The
proposed heuristics aim to identify the set of software entities which will be af-
fected when a given software entity is changed. They have evaluated the proposed
heuristics by using historical change data. They reported that the co-change data
is useful in the analysis of change propagation, whereas the code structure is not
a good indicator for this analysis.

Zimmermann et al (2005) have defined a tool to predict likely changes by
mining related changes previously performed in the software system. When the
developer made a change in a given software entity, the tool suggests possible
further changes. They carried out an empirical evaluation of their approach with
data from eight projects. They found that their approach was able to predict
changes with a precision of 40% in stable software systems.

The predicting model defined by Mirarab et al (2007) aims to determine the
chance that a particular module has to change when a given set of modules is
initially changed. Their model is based on the analysis of dependence between
modules and in the analysis of historical data, aiming to identify modules in the
system which have been changed simultaneously. This information is used to define
the probability of changing a module A when B is changed. They carried out a case
study with the program Azureus®. In the case study, the results of the model were
compared to historical data of changes. The results of the case study indicated a
strong correlation between the variables.

Brudaru and Zeller (2008) have defined the concept of genealogy of changes,
which is a directly acyclic graph whose nodes represent the changes performed in
a software system during its lifetime, and whose edges represent the dependencies

5 (http://sourceforge.net/projects/azureus/)

26 Kecia A. M. Ferreira et al.

between the changes. An edge from A to B means that A has caused B. Herzig
(2010) and Herzig and Zeller (2011) have used this concept to define a model aim-
ing to capture the long-term impact of changes, i.e., the impact of a change in other
ones along the lifetime of the software system. Their model aims to predict code
changes to be applied in the software system by analyzing how changes are related
one to another historically. They consider the following types of change performed
in methods of an object-oriented system: adding method, changing definition of
method, removing method, adding new method call, changing method call, remov-
ing method call. They carried out an empirical evaluation of their approach, using
data from four open-source programs, in which they observed a precision around

70%.

Robillard (2008) has proposed a technique for recommending program ele-
ments, such as methods and fields, which the developer should consider when
performing a given change in the program. The technique is based on the analysis
of the structural dependencies in the program. The algorithm used in the technique
has as entry a set of program elements which will be initially changed, and results
in another set containing program elements that the developer should consider in
the change process. Robillard (2008) has evaluated the proposal in an experiment
with five software systems, and has concluded that this kind of analysis can aid
developers to identify elements to be changed during the change process.

A simulation-based model was proposed by Li et al (2010) to evaluate change
propagation in object-oriented software. In the model, a software system is repre-
sented as a weighted graph, in which the nodes correspond to classes and interfaces,
and the edges correspond to relationships among them. The weights of the edges
are defined according to the type of relationship, such as inheritance, aggregation
and dependence. The weight of an edge represents the probability of a change
in a module will cause change in the other one. The model proposed by Li et al
(2010) considers only atomic modifications, i.e., it considers that a single module
will be changed each time and, then, it simulates the change propagation. The
algorithm applied in the simulation is the following: a class of the target system
is selected randomly; the adjacent classes are, then, affected iteratively; the result
of the simulation is the number of affected classes. For the target software system,
many simulations are performed. The final result is the mean value of the results
given by the simulations. Li et al (2010) used their model to evaluate five ver-
sions of Apache Ant. From the assumption that the model can be used to evaluate
the structural quality of a software system, they concluded that Apache Ant has
good quality. However, they did not describe any study to demonstrate that the
proposed model can evaluate structural quality of software systems properly.

The work of Dagenais and Robillard (2011) addresses the specific problem
of changing frameworks and the impact on client applications. The approach is
based on the analysis of the framework repository in order to identify the changes
performed on it and, then, recommend needs of changes in the client application.

Kawrykow and Robillard (2011) analyzed data from four open-source systems,
and have concluded that up to 15.5% of changes performed in a software system are
non-essential, such as local variable extraction and rename refactoring. Regarding
this result, they evaluate that any change-based approach should consider only the
relevant changes, because elimination of non-essential changes may improve the
change-based approach. Moreover, they consider that their technique may be used

A Model for Estimating Change Propagation in Software 27

with an approach of impact of code changes by detecting changes of low impact
in the system.

A very interesting empirical work on the topic of change propagation was car-
ried out by Geipel and Schweitzer (2012). They investigated the relationship be-
tween class dependence and change propagation. In their study, data from 35 large
open-source Java projects were analyzed. The data were gathered from CVS logs,
so that they captured the occurrences of classes that have been changed together,
what they called co-change. Their results support the idea that direct dependencies
are propagators of changes. They also concluded that indirect dependencies are
important and have to be considered when modeling change propagation. We used
the data reported by Geipel and Schweitzer (2012) as a benchmark to evaluate
the results of K3B in the present work.

The approach used to model the process of changing propagation in the present
work is innovative. We represent the software change process as a stochastic pro-
cess. As a result, we defined a generic model named K3B. The main differences
between K3B and the previous models are the following:

— K3B is a formula whose parameters are software metrics. This may aid software
engineers in the task of identifying the aspects of the target software system
that contribute to the high rate of change propagation.

— The model is not limited to single changes. K3B has as input parameter the
number of modules which will be initially changed.

— The idea of change step is introduced in the model to represent the fact that
a module is taken to be changed in a given moment and its changing process
must be declared as concluded in a given moment too.

— In a change process, a module may be changed many times, due to cyclic
dependence between modules within a system. The proposed model is not
limited to the number of classes which are affected in a change process. The
result of K3B is the estimated number of change steps, which considers that a
class may be changed more than once in a change process.

— The K3B model was designed to compare the change propagation effect of
software systems, by providing as result a measure that indicates how far a set
of changes will propagate throughout them. K3B also shows how the change
propagation effect of a program behaves as the number of modules that are
initially changed grows.

— The implementation of the K3B is simple.

— The model is generically defined in terms of modules, in such a way its defini-
tion may be applicable to any software development paradigm. In this work,
we focus in the object-orientation, by providing an implementation and an
evaluation of K3B in this paradigm.

7 Threats to Validity

In this section, we discuss the main threats to validity of this work.

28 Kecia A. M. Ferreira et al.

7.1 External validity

We identify four main threats to the external validity of this work. To define
the K3B model, a software system is taken as a group of modules connected
one to another. The metric that we used to compute ¢ considers only the explicit
relationships between the modules, which can be identified by source code analysis.
However, a software system can have relationships which cannot be discovered in
such a way. For instance, in an object-oriented program, the classes which use a
particular file are coupled, even if they do not directly use one another. In this
situation, a change in one of those classes may propagate to the other ones. The
metrics used for a and ¢ in our implementation of K3B do not consider situations
like these. Then, it is not possible to claim that the results of this study can be
generalized for programs with such characteristics.

The evaluation of K3B was limited to 1 < 7 < 5 because the simulation for ¢ > 5
was not feasible. Hence, is not possible to assure that the achieved conclusions can
be generalized for ¢ > 5.

An accurate evaluation of K3B in real scenarios of Software Engineering will
demand gathering data about the number of change steps resulting of each set
of contractual changes performed in a program. It is difficult, or even impossible,
to obtain this information from the repositories of open-source software systems,
since, in general, they do not maintain detailed information at this level. The
data we used to evaluate K3B in real scenarios are not in such level. However,
they provide sufficient information to allow a suitable comparison with K3B. The
results of such comparison have revealed that K3B, which is a mathematical model,
generates results that correspond to the real events that it aims to represent.

The evaluation of K3B was performed using only open-source software systems
due to the difficulty of obtaining data from proprietary software. There is no
apparent reason to believe that the results would not be applicable to proprietary
software. However, from the achieved results of this analysis, we are not able to
assure that our conclusions can be generalized to proprietary software.

7.2 Internal validity

We used the sample of open-source Java projects from the study of Geipel and
Schweitzer (2012) to evaluate K3B. As we compared the results of K3B with the
data reported by Geipel and Schweitzer (2012), it was important ensuring that we
are processing the same sample of data. However, they mentioned in their paper
only the date of the releases, that is 2008. Due to this, we had problems to identify
the proper releases of the programs. To overcome this issue, we considered only the
projects for which we could locate the releases with the date reported by Geipel
and Schweitzer (2012).

K3B is parametric. One of its parameters is «, a factor that contributes to the
high rates of change propagation. In our implementation of K3B, we considered
the level of coupling as . A threat to the validity of our study is that there is no
previous work that defines exactly the weight to be considered for each kind of cou-
pling among classes. For this reason, we defined those weights based on calibration
of the model, performed in preliminary experiments. Nevertheless, the weights we
defined in our implementation are close to the data of co-change found by Geipel

A Model for Estimating Change Propagation in Software 29

and Schweitzer, given in terms of probabilities. Anyway, further empirical studies
to identify more precise values for those weight would be appreciable.

7.3 Construct validity

The proposed model do not consider “which modules are inconsistent”, but “how
many modules are inconsistent”. This information is represented by the parameter
1 in the K3B formulae. K3B is a predicting model and, then, it aims to provide an
estimated number of change steps. Nevertheless, knowing “which modules are in-
consistent” is still important in maintenance scenarios, and further models should
be provided to calculate the exact number of change steps due to the changes in
specific modules.

The K3B formulae, given by Equations 4 and 5, were defined from the pattern
of the expressions, as described previously. Those expressions were generated for
values of n from 4 to 25. Although the K3B formulae are massively applied to all
the resultant expressions, there is no formal demonstration that they are applicable
for all value of n. Nevertheless, there is no reason to believe that this is not the
case. In the studies reported in this paper, the results obtained by means of K3B
was systematically compared with data obtained from simulation, as well as with
data reported previously in the literature. In both comparative studies, the data
reported by K3B is remarkably verified as good predictor of the change propagation
effect in object-oriented projects.

8 Conclusions

Software maintenance is responsible for most part of the total cost of a software
system. Controlling the software maintainability is important to reduce this cost.
Besides, the assessment of maintenance difficulties might help managers and de-
velopers in allocating resources to the maintenance tasks.

In the present work we defined a novel predicting model for change propagation
in software. The model, called K3B, predicts the number of change steps that a
modification process will take. K3B was defined based on probability concepts,
especially Markov Chains. K3B is a formula with five variables: n, which is the
total number of modules within the system; ¢, the number of modules which will
be initially changed; ¢, the percentage of connections between modules of the
system; a represents a factor which favors change propagation; and S represents a
factor which avoids change propagation. In our implementation of K3B, we used
a coupling metric for the parameter «, and a cohesion metric for g.

The K3B formulae indicate that the number of change steps in a strongly
connected system with high o and low f is explosive. This indicates that changing
a software system with such properties is an intractable problem. On the other
hand, even for large size programs, when ¢, o and [are suitable, the change
propagation effect might be well controlled.

We evaluated K3B by comparing its results with those given by simulation. In
this study, we used 37 releases of 11 open-source software systems. The results of
the evaluation showed that there is a strong correlation between the values given
by K3B and the values obtained from simulation. The results reported by K3B

30 Kecia A. M. Ferreira et al.

were also compared with historical data of change propagation. We have also found
a positive correlation between K3B and the historical data.

The K3B model provides an automatic and simple way for predicting change
impact in software systems. The higher the value of K3B, the greater the number
of steps in the modification process. Consequently, a high value of K3B indicates
that high amount of time should be spent in the activity and that the cost of the
software maintenance would be high.

The K3B model can be used to evaluate software maintainability since it is an
indicator of how widely a change or a set of changes would propagate throughout
the system. The main application of the model is the comparison of the change
propagation effect of software systems, since it indicates how this effect behaves
as the number of modules that are initially changed grows.

Based on the results of this work, we identify many directions for further work,
such as: new implementations of K3B in order to evaluate other candidate metrics
for a, B, and ¢; empirical studies to accurately identify the weights of the different
types of connections between modules; an extension of K3B in order to consider
which classes are changed during the maintenance process; development of proper
tools based on K3B to detect which classes will be affected during the modifica-
tion process; evaluation of K3B in representative industrial software systems; and
replication of this study with other programming environments.

A The Expressions Obtained

This appendix shows the expressions obtained for number of modules from 4 to 7. The symbol
a corresponds to the parameters g, whereas b corresponds to 3, respectively.

4 modules
[1+6%+12%§+12%§é

2 3
a a a
2+103+16b—2+12b—3

2 3
P a a a
3412 ¢ +16 4y +12 &3

2 3
a a a
’4+123+16b72+12b73

5 modules

- 2 3 4 4
a a a a

148 ¢ +24 8y +48 $x 48 4

2 3 4

a a a a

2+14F+36?+60;§+48H

2 3 4
a a a a
3+18?+40b72+60b73+48pf

2 3 4
a a a a
4420 ¢ 40 95 +60 O3 448 O

2 3 4
a a a a
’5+2OZ+40b72+60b73+48F’

A Model for Estimating Change Propagation in Software 31

6 modules

r a3 4 5 9
a a a a
14 10§ 440 + 120 & »3 +2407b + 240 b5

4 5
2+18%+64 +168~§+288%+240%5

a3 4 5
a a a a
3+24f+76 +180b—+288pf+240b—5

3 4 5
4+28%-;-80%-;-180%3-¢-288%(+240%5

a3 4 5
a a a a
5+SOZ+80 +180b—+288p7+240b—5

3 4 5
6+30%+80%Z+180%§+288%f+240%5

7 modules

- @ | an a2 a4 40 a8 1
1+12?+60~§+24 +7207+1 09 +140T
6

2+22a+100a +360 +960a +1680a +1440‘Z
a 4 2 440 28
3430 % +12 +408~§+10087+1680~5+1 (JT
6

4+36a+136a +420a +1008a +1680a +1440‘Z
5440 ¢ 140‘1 420‘13 1008“ 1680“’ 1440‘16
+ v+ T+ ;:;‘F 7+ ‘5’4’ s

6
6+42a+140a +420a +1008a +1680a +1440‘Z

6
»7+42%+140‘£7+4 %5+10087+16807+1440T_

References

Abreu FB, Carapuga R (1994) Object-oriented software engineering: Measuring and controlling
the development process. In: Proceedings of 4th Int. Conf. of Software Quality, McLean,
VA, USA

Bieman JM, Kang BK (1995) Cohesion and reuse in an object-oriented system. SIG-
SOFT Softw Eng Notes 20:259-262, DOI http://doi.acm.org/10.1145/223427.211856, URL
http://doi.acm.org/10.1145/223427.211856

Brudaru II, Zeller A (2008) What is the long-term impact of changes? In: Proceedings of
the 2008 international workshop on Recommendation systems for software engineering,
ACM, New York, NY, USA, RSSE ’08, pp 30-32, DOI 10.1145/1454247.1454257, URL
http://doi.acm.org/10.1145/1454247.1454257

Chaumun MA, Kabaili H, Keller RK, Lustman F (1999) A change impact model for change-
ability assessment in object-oriented software systems. In: Proceedings of the Third Eu-
ropean Conference on Software Maintenance and Reengineering, IEEE Computer Society,
Washington, DC, USA, pp 130-139

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented de-
sign. IEEE Trans Softw Eng 20(6):476-493, DOI 10.1109/32.295895, URL
http://dx.doi.org/10.1109/32.295895

Dagenais B, Robillard MP (2011) Recommending adaptive changes for framework evolution.
ACM Trans Softw Eng Methodol 20(4):19:1-19:35, DOI 10.1145/2000799.2000805, URL
http://doi.acm.org/10.1145/2000799.2000805

Ferreira KAM (2011) Um Modelo de Predicdo da Amplitude de Propagacdo de Modificagoes
Contratuais em Software Orientado por Objetos. Doctoral Dissertation.Computer Science
Department, Federal University of Minas Gerais, Brazil

Ferreira KAM, Bigonha MAS, Bigonha RS (2008) Reestruturacdo de software dirigida por
conectividade para redugao de custo de manutengao. Revista de Informética Tedrica e
Aplicada 15(2):155-179

Ferreira KAM, Bigonha MA, Bigonha RS, Almeida HC, Moreira RCN (2011) Métrica de
coesao de responsabilidade - a utilidade de métricas de coesdao na identificagdo de classes

32 Kecia A. M. Ferreira et al.

com problemas estruturais. In: X Brazilian Simposium on Software Quality - SBQS’2011,
Curitiba, Parana, Brazil, pp 9-23

Fowler M (1999) Refactoring: improving the design of existing code. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA

Geipel MM, Schweitzer F (2012) The link between dependency and cochange: Empiri-
cal evidence. IEEE Trans Softw Eng 38(6):1432-1444, DOI 10.1109/TSE.2011.91, URL
http://dx.doi.org/10.1109/TSE.2011.91

German DM, Hassan AE, Robles G (2009) Change impact graphs: Determining the impact of
prior codechanges. Inf Softw Technol 51(10):1394-1408, DOI 10.1016/;.infsof.2009.04.018,
URL http://dx.doi.org/10.1016/j.infsof.2009.04.018

Grinstead CM, Snell JL (1991) Introduction to Probability. America Mathematical Society

Hassan AE, Holt RC (2004) Predicting change propagation in software systems. In:
Proceedings of the 20th IEEE International Conference on Software Maintenance,
IEEE Computer Society, Washington, DC, USA, ICSM ’04, pp 284-293, URL
http://dl.acm.org/citation.cfm?id=1018431.1021436

Herzig K, Zeller A (2011) Mining cause-effect-chains from version histories. In: Proceed-
ings of the 2011 IEEE 22nd International Symposium on Software Reliability Engi-
neering, IEEE Computer Society, Washington, DC, USA, ISSRE ’11, pp 60-69, DOI
10.1109/ISSRE.2011.16, URL http://dx.doi.org/10.1109/ISSRE.2011.16

Herzig KS (2010) Capturing the long-term impact of changes. In: Proceedings of the
32nd ACM/IEEE International Conference on Software Engineering - Volume 2, ACM,
New York, NY, USA, ICSE ’10, pp 393-396, DOI 10.1145/1810295.1810401, URL
http://doi.acm.org/10.1145/1810295.1810401

Hitz M, Montazeri B (1995) Measuring coupling and cohesion in object-oriented systems. In:
Proceedings of the 1995 Int. Symposium on Applied Corporate Computing, Int. Sympo-
sium on Applied Corporate Computing, Monterrey, Mexico, pp 1-10

Kawrykow D, Robillard MP (2011) Non-essential changes in version histories. In:
Proceedings of the 33rd International Conference on Software Engineering, ACM,
New York, NY, USA, ICSE °’11, pp 351-360, DOI 10.1145/1985793.1985842, URL
http://doi.acm.org/10.1145/1985793.1985842

Li B, Sun X, Leung H, Sai Z (2012) A survey of code-based change impact analysis techniques.
Softw Test Verif Reliab pp 1-34, DOI 10.1002/stvr.1475

Li L, Qian G, Zhang L (2009) Evaluation of software change propagation using simula-
tion. In: Proceedings of the 2009 WRI World Congress on Software Engineering - Vol-
ume 04, IEEE Computer Society, Washington, DC, USA, WCSE ’09, pp 28-33, DOI
10.1109/WCSE.2009.22, URL http://dx.doi.org/10.1109/WCSE.2009.22

Li L, Zhang L, Lu L, Fan Z (2010) Assessing object-oriented software systems based on change
impact simulation. International Conference on Computer and Information Technology pp
1364-1369

Meyer B (1997) Object-oriented software construction, 2nd edn. Prentice Hall International
Series, USA

Mirarab S, Hassouna A, Tahvildari L (2007) Using bayesian belief networks to predict change
propagation in software systems. International Conference on Program Comprehension pp
177-188

Myers GJ (1975) Reliable software through composite design, 2nd edn. Petrocelli/Charter,
New York

Petrov V, Mordecki E (2003) Teoria de Probabilidades. Matematnka, Editorial URSS, Moscow

Pressman RS (2009) Software Engineering: A Practitioner’s Approach, 7th edn. McGraw Hill

Rajlich 'V (1997) A model for change propagation based on graph rewriting.
In: Proceedings of the International Conference on Software Maintenance,
IEEE Computer Society, Washington, DC, USA, ICSM ’'97, pp 84-91, URL
http://dl.acm.org/citation.cfm?id=645545.656039

Robillard MP (2008) Topology analysis of software dependencies. ACM Trans
Softw Eng Methodol 17(4):18:1-18:36, DOI 10.1145/13487689.13487691, URL
http://doi.acm.org/10.1145/13487689.13487691

Sommerville I (2011) Software Engineering 9. Pearson Education

Zimmermann T, Weissgerber P, Diehl S, Zeller A (2005) Mining version histories to guide
software changes. IEEE Trans Softw Eng 31(6):429-445, DOI 10.1109/TSE.2005.72, URL
http://dx.doi.org/10.1109/TSE.2005.72

A Model for Estimating Change Propagation in Software 33

Fig. 8 Kecia Ferreira received her Ph.D. in Computer Science from Federal
University of Minas Gerais (Brazil) in 2011. She is a professor of Computer
Engineering at Federal Center for Technological Education of Minas Gerais.
Her main research interest is software measurement and its applications in
software development and maintenance. Her most recent research has focused
on software metrics, software evolution and software maintenance.

Fig. 9 Mariza Bigonha received her Ph.D. in Computer Science from Pon-
tifical Catholic University Rio de Janeiro (Brazil) in 1994. She is a professor
of Computer Science at Federal University of Minas Gerais (Brazil) since 1994.
Her main research interests are Programming Languages, Compilers and Code
Optimization.

Fig. 10 Roberto Bigonha received his Ph.D. in Computer Science from
University of California, Los Angeles (1981). He is a professor of Computer
Science at Federal University of Minas Gerais (Brazil) since 1974, and he is also
a member of the Brazilian Computer Society. His main research interests are
Programming Languages, Compilers and Formal Semantics.

Fig. 11 Bernardo N. B. de Lima received his Ph.D. in Mathematics from
National Institute for Pure and Applied Mathematics (IMPA), Rio de Janeiro-
Brazil in 2003. He is a professor of Mathematics at Federal University of Minas
Gerais (Brazil) since 1999. His main research interest are Probability Theory,
Statistical Mechanics and Discrete Mathematics with emphasis in the study of
percolative models.

Fig. 12 Luiz Felipe O. Mendes is a Bachelor in Computer Science by Uni-
versidade Federal de Minas Gerais. He is a data scientist and co-founder of
Hekima, a Brazilian company of Big Data and Artificial Intelligence. His main
interest are Machine Learning and Data Analytics.

Fig. 13 Barbara M. Gomes is a Computer Engineering by Federal Center
for Technological Education of Minas Gerais. Her main interests are Software
Engineering and Optimization.

