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a  b  s  t  r  a  c  t

Despite  the  importance  of  software  metrics  and  the  large  number  of  proposed  metrics,  they  have  not  been
widely  applied  in industry  yet.  One  reason  might  be  that, for  most  metrics,  the  range  of  expected  values,
i.e., reference  values  are  not  known.  This  paper  presents  results  of  a study  on  the  structure  of  a  large
collection  of  open-source  programs  developed  in  Java,  of  varying  sizes  and from  different  application
domains.  The  aim of this  work  is  the  definition  of  thresholds  for a  set  of  object-oriented  software  metrics,
eywords:
oftware metric thresholds
pen-source software
bject-oriented software

namely:  LCOM,  DIT,  coupling  factor,  afferent  couplings,  number  of  public  methods,  and  number  of  public
fields.  We  carried  out  an  experiment  to  evaluate  the  practical  use  of  the  proposed  thresholds.  The  results
of this  evaluation  indicate  that  the  proposed  thresholds  can  support  the  identification  of  classes  which
violate  design  principles,  as  well  as  the identification  of  well-designed  classes.  The  method  used  in  this
study  to  derive  software  metrics  thresholds  can be  applied  to  other  software  metrics  in  order  to  find  their
reference  values.
. Introduction

Software metrics allow measurement, evaluation, control and
mprovement of software products and processes. Much research
as been carried out on the topic of software metrics. Dozens of
etrics have been proposed and validated, and a large number of

ools have been developed (Fenton and Neil, 2000; Xenos et al.,
000; Baxter et al., 2006; Kitchenham, 2009). Despite the important
ontribution of such works, the effective use of metrics in Software
ngineering is inhibited by the lack of knowledge on software met-
ic thresholds. Few empirical studies have been accomplished in
rder to derive these reference values (Lanza and Marinescu, 2006).
hese works are not based properly on statistical properties of
he analyzed data. Besides, they are not concerned in investigating
hresholds for object-oriented software metrics specifically.

The aim of the present work is to identify thresholds for a set
f object-oriented software metrics, namely: LCOM, DIT, coupling
actor, afferent couplings, number of public methods and num-
er of public fields. This set of metrics was selected because they
re related to relevant software quality factors, such as cohesion,
oupling and information hiding.

We performed a study on the structure of a large collection of
pen-source programs developed in Java, with different sizes and

pplication domains. The thresholds were derived by analyzing the
tatistical properties of the data and, then, by identifying the val-
es most commonly used in practice. Our analysis concluded that
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five metrics investigated in this study are modeled by a heavy-
tailed distribution, which means that there is no typical value for
them. We present in detail the method used to derive thresholds
for software metrics, in such way  it can be repeated and applied to
derive thresholds for other software metrics. We  carried out four
types of analyses: with the entire data set, which leads to general
thresholds; by software system sizes; by application domains; and
by types of software systems (tool, library and framework).

In this paper, we carried out two experiments to evaluate
the proposed thresholds. In the first experiment, we investigated
whether the proposed thresholds can help to identify classes with
design problems. The second experiment was performed to assess
whether the thresholds can support to identify well-designed
classes. The results of this study indicate that the proposed thresh-
olds are useful in helping to evaluate software system designs.

The paper is organised as follows. Section 2 discusses relevant
related work. Section 3 provides background on the analysed met-
rics and describes the methods used in this research. Section 4
presents results of this study and their analysis. Section 5 identi-
fies the software metric thresholds suggested in this work. Section
6 describes two  case studies carried out to evaluate the proposed
thresholds. Section 7 discusses the limitations of this work. Con-
cluding remarks are presented in Section 8.

2. Related work
A large number of software metrics have been proposed (Abreu
and Carapuç a, 1994; Chidamber and Kemerer, 1994; Xenos et al.,
2000; Kitchenham, 2009). Despite the effort in defining and eval-
uating software metrics, this research area is challenging. Proper
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http://www.sciencedirect.com/science/journal/01641212
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nterpretation of metric values is essential to characterize, evaluate
nd improve the design of software systems. However, the typi-
al values of most software metrics are not known yet (Tempero,
008). Without knowing metric thresholds, software community
ill not be able to apply software metrics in practice (Lanza and
arinescu, 2006). This section discusses works concerned with

haracterization of software systems by means of software metrics,
nd with identification of software metric thresholds.

There has been wide interest in investigating the way  modules
ithin a software system connect to each other. A conclusion drawn

y those works is that software seems to be governed by power
aws (Baxter et al., 2006; Louridas et al., 2008; Potantin et al., 2005;
uppin and Silvestri, 2006; Wheeldon and Counsell, 2003; Ferreira
t al., 2009). A power law is a probability distribution function in
hich the probability that a random variable X takes a value x is
roportional to a negative power of x, i.e., P(X = x) ∝ cx−k. A power

aw distribution is a heavy-tailed distribution. A characteristic of
his type of distribution is that the frequency of high values for
he random variable is very low, and the frequency of low values is
igh. In such distribution, the mean value is not representative, and
o, there is no value that can be considered as typical to the ran-
om variable (Newman, 2003). Much research has identified power

aws in graphs that represent relationships between classes and
bjects in an object-oriented system. For instance, Potantin et al.
2005) analyzed 60 graphs of 35 software systems and concluded
hat relationships between objects, in execution time, constitute a
cale free graph. A scale free graph is different from a graph with
dges distributed randomly. In a random graph, the mean value
f node degrees is representative, while in a scale free graph this
roperty is not true because its node degrees distribution follows a
ower law. Wheeldon and Counsell (2003) identified power laws in
he graph of Java program classes. The data analyzed in their study
re from three well-known software systems: JDK (Java Develop-
ent Kit), Apache Ant and Tomcat, in a total of 6870 classes. They

lso identified power law in the following class metrics: number of
elds, number of methods and constructors. Louridas et al. (2008)
nalyzed data of programs developed in C, Perl, Java and Ruby. A
et of 11 software systems was analyzed in their work, among them
2SE SDK, Eclipse, OpenOffice and Ruby. The study concluded that,
egardless of the programming paradigm, in and out-degree are
overned by power law.

Baxter et al. (2006) investigated the structure of a large num-
er of Java programs. The data set used in their study is from 56
pen-source software systems, with varying size and from different
pplication domain. They concluded that some of the analyzed met-
ics follow a power law and others do not. Their study suggests that
n-degree and number of subclasses are a power law distribution,
ut out-degree, number of fields and number of public fields are
ot. This conclusion diverges from findings of the study of Louridas
t al. (2008),  which found that out-degree of classes follows a power
aw. Findings of Baxter et al. (2006) and Louridas et al. (2008) bring
nformation that can allow understanding the shape of open-source
rograms. However, they did not explore their results in order to

dentify typical or reference values for the analyzed metrics. Fur-
hermore, those works did not analyze metrics of important quality
actors, such as module cohesion.

Lanza and Marinescu (2006) state that there are two sources for
hresholds values: statistical information and the widely accepted
nowledge. Statistics-based thresholds are derived from statistical
nalysis of data from a population or a sample of a population. Using
tatistical analysis, Lanza and Marinescu (2006) suggested thresh-
lds of three software metrics: number of methods per class, lines

f code per method, and cyclomatic number per lines of code. They
ollected these metrics from 37 C++ systems and 45 Java systems.
he diversity of size, application domain, and type (open-source
nd commercial software) was the basis of the sample selection.
s and Software 85 (2012) 244– 257 245

Thresholds proposed by them are given by: an interval of typi-
cal values of the metric; a lower bound and an upper bound of
this interval; and a value which can be considered an outlier. Con-
sidering a normal distribution for the collected data, they applied
average and standard deviation in order to define the thresholds:
for each metric, the average is the typical value and the standard
deviation is used to define the two  bounds of the typical values
interval. They consider a value as an outlier if it is 50% higher than
the highest value of the interval. The method applied in their work
is useful only if the values follow a normal distribution. However, as
pointed by the other studies described in this section, a large num-
ber of software metrics follow power law. Then, interpreting these
metrics in terms of average values can be extremely misleading.

The present work aims to determine thresholds of six software
metrics, which have not been studied in this way  in previous works:
LCOM (lack of cohesion in methods), DIT (depth in inheritance tree)
(Chidamber and Kemerer, 1994), COF (coupling factor) (Abreu and
Carapuç a, 1994), afferent couplings, number of public methods and
number of public fields. These metrics are described in Section 3.1.
Our analysis shows that values of the metrics evaluated in this
work are not fitted by a normal distribution. We  identify a probabil-
ity distribution that well fits values of these metrics. Furthermore,
we  present a method for derive thresholds of these metrics based
on statistical analysis of the data. Using this method, we propose
thresholds for the six software metrics evaluated in this study.

3. Methods

In this section, we  describe the software metrics analyzed in this
study and present the method which we employed to derive metric
thresholds.

3.1. Software metrics

There is a large number of object-oriented software metrics. In
the scope of this work, we  studied six of those metrics, which were
selected because they are related to influential factors to software
quality, such as coupling, cohesion, encapsulation, information hid-
ing and depth of inheritance tree. The metrics are described as
follows:

COF (Coupling Factor) (Abreu and Carapuç a, 1994): this metric
is calculated for the system level. It is based on the concept of
client–supplier relationship between classes. Considering this con-
cept, a class A is client of a server class B if A references to at least
one feature of B. If A is client of B, then there is a connection from
A to B. In a software system with n classes, the maximum pos-
sible number of connections is n2 − n. COF is given by c/(n2 − n),
where c is the number of actual connections between the classes
in the program. This metric is an indicator of the connectivity level
of the system. The higher COF value, the higher the connectivity
of the system and the lower its maintainability is thought to be
(Abreu and Carapuç a, 1994). As asserted by Meyer (1997),  in a
software architecture, “every module should communicate with as
few others as possible”, otherwise changes and errors may  widely
propagate in the system.
Number of public fields: this metric measures the total number
of public fields defined in a class. One of the main concepts of
object-oriented paradigm is information hiding, which states that
a module should reveal little as possible about its inner workings.
In order to achieve this principle, it is desirable to avoid making

data public. A public field of an object can be directly accessed and
changed by other objects. Hence, the use of public field can lead to
strong coupling among classes within a software system, reducing
the modularity of the program (Fowler, 1999; Meyer, 1997).
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Table 1
Software systems, their application domain, type, size, number of connections between classes, and COF metric.

Domain Software Type #Classes #Connections COF

Clustering Essence Framework 182 543 0.016
Gridsim Tool 214 774 0.017
JavaGroups Tool 1061 3807 0.003
Prevayler Library 90 137 0.017
Super (Acelet-Scheduler) Tool 246 1085 0.018

Database DBUnit Framework 289 911 0.011
ERMaster Tool 569 2187 0.007
Hibernate Framework 1359 5199 0.003

Desktop Facilitator Tool 2234 6565 0.001
Java Gui Builder Tool 60 126 0.036
Java X11 Library Library 318 1146 0.011
J-Pilot Tool 142 367 0.018
Scope Framework 214 535 0.012

Development Code Generation Library Library 226 662 0.013
DrJava Tool 2766 9684 0.001
Find  bugs Tool 1019 3108 0.003
Jasper reports Library 1233 5610 0.004

ork 

ork 

 

Junit Framew
Spring Framew
BCEL Library

Number of public methods: this metric is the total number of public
methods defined in a class. The number of public methods is an
indicator of the external size of a class. It is a relevant measure
from the viewpoint of the clients of a class because it represents
the number of functionalities the class provides to them. As stated
by Fowler (1999),  a large number of methods in a class is a sign that
the class may  have too many responsibilities, what makes this class
hard to understand and maintain. This code smell, also known as
God Class or Blob, refers to classes which perform a large amount
of responsibilities in such way they centralize the intelligence of
the system (Lanza and Marinescu, 2006). Although the number
of public methods can be only a portion of the total number of
methods of a class, it can be taken as an indicator of how large a
class is. In the present work, we computed this metric by counting
the public methods, excluding the protected ones.
LCOM (Lack of Cohesion in Methods) (Chidamber and Kemerer,
1994): this metric measures the cohesion level of a class by con-
sidering the concept of similarity of methods of the class. Two
methods are similar if they use at least one common field of their
class. LCOM is given by the number of pairs of non-similar methods
minus the number of pairs of similar methods. When the number
of pairs of non-similar methods is less than the number of pairs
of similar methods, LCOM is set to zero. According to Chidamber
and Kemerer (1994),  the higher LCOM value, the lower the class
cohesion. However, a zero value does not necessarily mean good
cohesion.

There is a large number of cohesion metrics for object-oriented
software, and LCOM has been criticised in the literature (Briand
et al., 1999; Kitchenham, 2009). In spite of this, we consider LCOM
in our study because there is no consensual conclusion about the
best way on measuring class cohesion. In addition, some cohesion
metrics are based on the same idea of similarity used by LCOM.
Here, we make no claim about the validity of LCOM. The scope
of this work is to investigate the common values of this metric
in practice, providing a threshold for those who use it. A study of
Lincke et al. (2008) analyzed ten software metric tools for Java pro-
grams; seven of those tools collect LCOM as originally proposed by
Chidamber and Kemerer (1994),  while only three of them collect
a new version of LCOM. Therefore, LCOM seems to be widely used

despite the criticism it has been suffered.
DIT (Depth of Inheritance Tree) (Chidamber and Kemerer, 1994):
this metric is given by the maximum distance of a class from the
root class in the inheritance tree of the system. Inheritance is a
154 353 0.015
2116 7069 0.002

373 2111 0.015

powerful technique of software reuse. Nevertheless, Gamma et al.
(1994) claim its immoderate use can make software design more
complex. They, then, define a principle: favor object composition
over class inheritance. In the same vein, Sommerville (2000) argues
that inheritance introduces difficulties in the comprehension of
objects behavior. An empirical study of Daly et al. (1996) shows
that deep inheritance trees make software maintenance more dif-
ficult. DIT indicates how deep a class is in the inheritance tree. It is
considered as an indicator of the design complexity of the system
(Chidamber and Kemerer, 1994). The higher the DIT of a class, the
higher the number of classes involved in its analysis and the more
complex its comprehension.
Afferent couplings: if a class A references another class B, then there
is an afferent coupling in B from A and there is a corresponding
efferent coupling in A. A given class A references another class B
if (i) A calls a method from B, (ii) A access a field of B, or (iii)A is
a subclass of B. This metric is the number of incoming couplings
of a class (Ferreira et al., 2008). It is an indicator of the number
of classes which depend upon a given class. Classes with a high
number of afferent couplings play an important role in the system,
because errors or modifications on them may  widely impact other
classes. For Java software, we  computed this metric also for inter-
faces. In this case, the number of afferent couplings of an interface
is the number of classes which implement the interface or have any
reference to the interface. Martin (1994) have defined the metric
afferent coupling (Ca) to the package level. By his definition, the
number of afferent couplings of a package is the number of classes
outside this package which depend upon classes within this pack-
age. The metric used in the present work, however, is computed
to the class level. In the literature, the term in-degree is also com-
monly used to denote the number of incoming couplings of a given
class.

3.2. Data set

The data used in this study are from 40 open-source
Java software systems, downloaded from SourceForge
(www.sourceforge.net), varying size from 18 to 3500 classes,
in their latest version up to June 2008. Program codes are from 11

application domains and three types: tool, library and framework.
More than 26,000 classes were analyzed. The software systems
and their application domains, types and sizes are described in
Tables 1 and 2. The two final columns of Tables 1 and 2 show,

http://www.sourceforge.net
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Table 2
Software systems, their application domain, type, size, number of connections between classes, and COF metric.

Domain Software Type #Classes #Connections COF

Enterprise Liferay Framework 14 14 0.077
Talend Tool 2779 3567 0.000822
uEngine BPM Framework 708 1774 0.004
YAWL  Tool 382 1186 0.008

Financial JMoney Tool 193 424 0.019

Games JSpaceConquest Tool 150 424 0.019
KoLmafia Tool 810 5106 0.008
Robocode Tool 213 738 0.016

Hardware Jcapi Library 21 61 0.145
LibUSBJava Library 35 90 0.076
ServoMaster Library 55 117 0.039

Multimedia CDK Library 3586 14711 0.001
JPedal  Tool 539 1533 0.005
Pamguard Tool 1503 5267 0.002

Networking BlueCove Library 142 461 0.023
DHCP4Java Library 18 29 0.095
jSLP Library 42 156 0.091
WiKID  Strong Authentication Library 50 27 0.011
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espectively, the number of connections between classes within
he software system, and the value of COF.

A tool, called Connecta (Ferreira et al., 2008), was used to col-
ect the metrics. Connecta collects object-oriented software metrics
rom bytecodes of Java programs. For this reason, a criterion to
hoose the software systems analyzed in this study was the avail-
bility of their bytecode.

We carried out four analyses of the data set: (1) we analyzed the
ata as whole and also by (2) application domain, (3) by size, and
4) by type of software systems. The purpose of these analyses was
nding out whether there would be a single probability distribu-
ion which could fit values of a metric, regardless of the application
omain, type or size of the software systems. Based on the statisti-
al properties of the identified probability distributions, we derived
etric thresholds.

.3. Data fitting

A tool, called EasyFit (Mathwave, 2010), was  used to fit the
ata to various probability distributions, such as Bernoulli, Bino-
ial, Uniform, Geometric, Hypergeometric, Logarithmic, Binomial,

oisson, Normal, t-Student, Chi-square, Exponential, Lognormal,
areto and Weibull. A probability distribution has two main func-
ions: the probability density function (pdf), f(x), which expresses the
robability the random variable takes a value x, and the cumula-
ive distribution function (cdf), F(x), which expresses the probability
he random variable takes a value less than or equal to x. In the
xperiment of this study, the Poisson and the Weibull distributions
howed themselves to be well fitted to the data.

The Poisson distribution has pdf,  fp(x), and cdf,  Fp(x), defined by
qs. (1) and (2),  respectively. The parameter � of the distribution
epresents the mean value of the random variable.

p(x) = P(X = x) = e−�.�x

x!
(1)

p(x) = P(X ≤ x0) =
x=x0∑ e−�.�x

x!
(2)
x=0

The Weibull distribution has pdf,  fw(x), and cdf,  Fw(x), with
arameters  ̨ and ˇ, defined by Eqs. (3) and (4),  respectively. The
arameter  ̌ is called scale parameter.  Increasing the value of  ̌ has
110 226 0.022
171 325 0.011

the effect of decreasing the height of the curve and stretching it.
The parameter  ̨ is called shape parameter.  If the shape parameter
is less than 1, Weibull is a heavy-tailed distribution and it can be
applied in cases in which the random variable presents left asym-
metry, i.e., when there is a small number of occurrences with high
values and a far larger number of occurrences with low values. In
this kind of distribution, the mean value is not representative.

fw(x) = P(X = x) = ˛

ˇ

(
x

ˇ

)˛−1
e−(x/ˇ)˛

,  ̨ > 0,  ̌ > 0 (3)

Fw(x) = P(X ≤ x) = 1 − e−(x/ˇ)˛
,  ̨ > 0,  ̌ > 0 (4)

3.4. Data analysis

For each metric, the data were collected and two graphics were
generated: a scatter plot, in order to exhibit the frequency of
the metric values, and the same data in doubly logarithmic scale
(log–log scale), in order to observe whether the distribution shows
itself to be a power law. When plotted in a log–log scale, a power law
distribution is right-skewed and has an approximately straight-line
form. If values of a metric follow a power law, it means that fre-
quency of high values for the metric is very low, while frequency
of low values is too high.

The data were fitted to probability distributions by the tool,
which indicated the probability distributions best fitted to the data.
For each metric, considering the results given by the tool and the
visual analysis of the fitting, we  identified the probability distri-
bution which best fit to the data. If probability distribution had
a representative mean value, like the Poisson distribution, this
value was  taken as typical for this metric. Otherwise, we  worked
with three ranges for the metric values: good, regular and bad. The
good range corresponds to values with high frequency. It is the
most common values of the metric in practice. These values do
not express the best practices in Software Engineering necessarily.
Nevertheless, they expose a pattern of most software systems. It is
desirable that a software system has at least the same quality level
of the others. Preferably, a software development should strive for

even better quality. The bad range corresponds to values with quite
low frequency, and the regular range is an intermediate one, that
corresponds to values that are not too frequent neither have very
low frequency.
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Fig. 1. COF – (a) frequency and 

. Results

In this section, we describe the findings of our study. First, results
f the entire data set are described. Then, we discuss results of the
nalysis performed on application domains, types and sizes of the
oftware systems.

.1. Data fitting of metrics in the entire data set

.1.1. COF
The COF scatter plot in Fig. 1a shows that values less than 0.02

re far more frequent than higher values. COF can be modeled by the
eibull distribution, with parameters  ̨ = 0.91927 and  ̌ = 0.01762.

ig. 1b shows values of COF modeled with the Weibull distribution.
ore than 80% of the programs have COF less than 0.02. The proba-

ility that COF will fall into the interval 0.02–0.14 is quite low, and
he probability that COF takes values higher than 0.14 tends to zero.
his result points out that, in most cases, open-source software sys-
em is low connected, what may  contribute to its maintainability.

.1.2. Afferent couplings
The scatter plot for afferent couplings, shown in Fig. 2a, suggests

 heavy-tailed distribution. Fig. 2b shows the same data plotted in
ogarithmic scale (log–log scale). In this plot, distribution shows
tself to be linear that is the characteristic signature of a power
aw. There is a small number of classes with high number of affer-
nt couplings and a far higher number of classes with few afferent
ouplings. As shown by Fig. 2c, values of this metric can be mod-
led by the Weibull distribution, with parameters  ̨ = 0.78986 and

 = 3.2228. Afferent couplings distribution is detailed in Fig. 2d.
lmost 50% of classes have at most one afferent coupling. The
robability that a class has 1–20 afferent couplings is low, and the
robability that a class has more than 20 afferent coupling tends to
ero. This observation points out that most classes affect directly
nly one class at most. This can contribute to software maintain-
bility since a modification or an error in a class will impact in a
ow number of classes.

.1.3. LCOM
LCOM also is fitted by a heavy-tailed distribution. Fig. 3a shows
 scatter plot of the data set, and Fig. 3b shows the same data
lotted in log–log scale. This graphic indicates that LCOM values
ollow a power law. Values of LCOM can be modeled by the Weibull
istribution, as shown in Fig. 3c, with parameters  ̨ = 0.23802 and
ing to the Weibull distribution.

ˇ = 1.465. Fig. 3d details LCOM distribution. Approximately 50% of
classes have LCOM equals to zero. There are classes with LCOM
between 0 and 20 in a low frequency, less than 12%. The probability
that a class has LCOM greater than 20 tends to zero.

4.1.4. DIT
The scatter plot in Fig. 4a shows the distribution of values of DIT,

and Fig. 4b shows the same data in a log–log scale. These plots do not
suggest power law characteristics. In fact, DIT values can be fitted
to the Poisson distribution, as shown in Fig. 4c, with parameters
� = 1.6818. In the Poisson distribution, � is the mean value of the
random variable. By this finding, in open-source software systems,
the largest distance from a class to the root in the inheritance tree
is 2, in general. Shallow inheritance tree contributes to software
quality by decreasing software complexity, as asserted by Gamma
et al. (1994),  Daly et al. (1996) and Sommerville (2000).

4.1.5. Public fields
The scatter plot of number of public fields, shown in Fig. 5a,

reveals that classes with a large number of public fields are few. In
most cases, the number of public fields in a class is near to zero.
Fig. 5b shows the data plotted in a log–log scale, which indicates
that number of public fields in classes also follows a power law. This
metric can be modeled by the Weibull distribution with parame-
ters  ̨ = 0.71008 and  ̌ = 4.4001, what is shown in Fig. 5c. Fig. 5d
details the same distribution. Most of 75% of the classes have no
public field, and the probability that a class has more than 10 public
fields tends to zero. This observation reveals that most of software
systems apply the information hiding principle appropriately.

4.1.6. Public methods
The frequency of number of public methods is shown in Fig. 6a

and, in a log–log scale, in Fig. 6b. These plots show that number
of public methods follows power law. This metric can be mod-
eled by the Weibull distribution, with parameters  ̨ = 0.85938 and

 ̌ = 5.6558, as shown in Fig. 6c. The frequency of number of public
methods is detailed in Fig. 6d. There is a low portion of classes with
a large number of public methods, and most classes have few pub-

lic methods. Most classes have 0–10 public methods. Classes with
10–40 public methods are rare, and the probability that a class has
more than 40 public methods is quite low. By these findings, it could
be concluded that, in most of cases, classes provide few services.
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Fig. 2. Afferent couplings – (a) frequency, (b) frequency in log–log

. Software metric thresholds

A large number of object-oriented, open-source programs were
valuated by means of six software metrics in this study. Findings
f our analysis lead to identify thresholds of those metrics. We  pro-
ose to use as thresholds the values of software metrics found in
ractice. From the achieved results, we identified three ranges of
eference values for the metrics: good, which refers to the most
ommon values of the metric; regular,  which is an intermediate
ange of values with low frequency, but not irrelevant; and bad, that
efers to values with quite rare occurrences. For instance, LCOM,
hose frequency is shown in Fig. 3d, is 0 for more than 44% of the

lasses, values between 1 and 20 occur in a very low frequency, and
alues greater than 20 are rare. Therefore, we derived the LCOM
hreshold: 0 (good cohesion), 1–20 (regular cohesion) and greater

han 20 (bad cohesion).

These thresholds do not necessarily denote the best practices
n Software Engineering. Nevertheless, they represent the quality
evel which developers usually apply in software, providing a ref-

able 3
eneral thresholds for OO software metrics.

Factor Level Metric 

Connectivity System COF
Class # Afferent couplings

Information hiding Class # Public fields 

Interface size Class # Public methods 

Inheritance Class DIT 

Cohesion Class LCOM 
, (c) fitting to the Weibull distribution and (d) frequency detailed.

erence in evaluation of software by means of metrics. For instance,
if COF of a software system is 0.5 and the good value of this met-
ric is 0.02, it means that the classes within the software system are
much more coupled than in most of systems. Hence, if the develop-
ers want their systems as good as others in terms of coupling, they
should keep the COF of their systems below 0.02. Thresholds are
highly important in interpreting values of a metric. Knowing refer-
ence values of software metrics might strongly contribute to make
them useful in practice. However, metrics can support decision-
making, but cannot substitute the judgment of the specialist.

The same analysis was  performed for the other metrics. The
reference values suggested for COF, LCOM, DIT, afferent couplings,
number of public methods and number of public fields are summa-
rized in Table 3. We  also carried out similar analyses by application
domains, type and size of the software systems. The results of these

analyses are described as follows. These analyses, however, were
not performed to COF because this metric is given to the system
level, and each resultant subset of those analyses has just a few
software systems. Having a few programs in these resultant sub-

Reference values

Good: up to 0.02; regular: 0.02–0.14; bad: greater than 0.14
 Good: up to 1; regular: 2–20; bad: greater than 20

Good: 0; regular: 1–10; bad: greater than 10
Good: 0–10; regular: 11–40; bad: greater than 40
Typical value: 2
Good: 0; regular: 1–20; bad: greater than 20



250 K.A.M. Ferreira et al. / The Journal of Systems and Software 85 (2012) 244– 257

(c) fitt

s
s

5

e
W
d
fi
f
a
a

T
T

Fig. 3. LCOM (a) frequency, (b) frequency in log–log scale, 

ets restricts any conclusion about the behavior of COF regarding
ize, type, and application domain in this study.

.1. Thresholds for OO software metrics by application domains

The software metrics studied in this work were analyzed for
ach application domain of the software systems listed in Table 1.
e found that values of a software metric, in a specific application

omain, can be modeled by the same probability distribution which

tted the metric in the entire data set. Using the same analysis per-

ormed to the entire data set, we derived the reference values by
pplication domains. The results are reported in Table 4. There is

 slight difference between the results of the application domains

able 4
hresholds for OO software metrics by application domains.

Application
domain

Afferent coupling
(good/regular/bad)

# Public fields
(good/regular/bad)

Clustering 0–1/1–20/>20 0/1–7/>7 

Database 0–1/2–20/>20 0/1–8/ >8 

Desktop 0–1/2–20/>20 0/1–8/ >8 

Development 0–1/2–25/>25 0/1–8/>8 

Enterprise 0–1/2–22/>22 0/1–11/>11 

Financial 0–1/2–16/>16 0/1–4/>4 

Games 0–1/2–22/>22 0/1–9/>9 

Hardware 0–1/2–11/>11 0–1/2–6/>6 

Multimedia 0–1/2–20/>20 0/1–9/>9 

Networking 0–1/2–20/ >20 0/1–5/>5 

Security 0–1/2–16/>16 0/1–8/ >8 
ing to the Weibull distribution and (d) frequency detailed.

and those of the entire data set. Nevertheless, this difference does
not mean a disagreement. This observation is true even for the
Financial application domain, which has only one software system
analyzed in this work. Thus, we believe that the general result, listed
in Table 3, can be used to software systems in general.

5.2. Thresholds for OO software metrics by software types

The software systems analyzed in this work are of three types:

tool, framework and library. We  carried out the analysis of values of
the software metrics studied in this work for those three categories.
The results reveal that the distribution probability which modeled
values of a metric in the whole data set is also applicable to different

# Public methods
(good/regular/bad)

DIT (typical value) LCOM
(good/regular/bad)

0–20/20–45/>45 2 0/1–20/>20
0–20/21–50/>50 2 0/1–20/ >20
0–20/21–55/ >55 2 0/1–15/>15
0–20/21–35/>35 2 0/1–25/>25
0–15/16–35/>35 1 0/1–35/>35
0–13/14–32/>32 2 0/1–25/>25
0–20/21–32/>32 1 0/1–35/>35
0–20/21–36 />36 2 0/1–80/>80
0–35/36–60/>60 2 0/1–60/>60
0–15/16–40/>40 2 0/1–40/>40
0–25/26-50/>50 1 0/1–45/>45
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ategories of software. Table 5 summarizes the thresholds derived
n this analysis. We  discuss such results as follows.

Public fields: in the three cases, more than 80% of classes have no
public fields, frequency of classes with 1–8 public fields is very
low, and frequency of classes having more than 8 public fields is

near to zero.
Public methods: there is a slight difference among the distri-
butions of values of this metric in frameworks, libraries and
tools. The distribution of values in tools is a little more left

able 5
hresholds for OO software metrics by software types.

Type Afferent coupling
(good/regular/bad)

# Public fields
(good/regular/bad)

# Public
(good/re

Tool 0–1/2–20/>20 0/1–8/>8 0–20/21
Framework 0–1/2–20/>20 0/1–10/>10 0–25/26
Library 0–1/2–25/>25 0/1–8/>8 0–25/26
g scale, (c) fitting to Poisson’s distribution.

concentrated, indicating that tools have less number of public
methods than frameworks and libraries.

• LCOM: values of this metric have a very similar distribution in the
three cases. Thresholds of this metric in the three categories of
software system are basically the same found in the analysis of
the whole data set.

• DIT: this metric can be modeled by the Poisson distribution in

the three cases. There is a little difference in mean values: 1.68 in
frameworks, 1.74 in tools and 1.96 in libraries.

• Afferent couplings: results found in the analysis of data from
frameworks, libraries and tools are basically the same. Thresholds

 methods
gular/bad)

DIT (typical value) LCOM
(good/regular/bad)

–50/>50 2 0/1–20/>20
–50/>50 2 0/1–20/>20
–40/>40 2 0/1–25/>25
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Fig. 5. Public fields – (a) frequency, (b) frequency in log–log sc

identified for this metric in the three cases are compatible with
those found in the entire data set.

.3. Thresholds for OO software metrics by software size

We grouped the software systems analyzed in this work in three
ets according their size: up to 100 classes, from 101 to 1000 classes
nd more than 1000 classes. The software metrics studied in this
ork were analyzed for each set. We  found that a single probability
istribution can model values of a software metric, regardless of
he software system size. Such probability distribution is the same
hich modeled values of the metric in the whole data set.

Using the same analysis performed to the entire data set, we
erived the thresholds for the software metrics, by size of software
ystem. The results are reported in Table 6. There is a slight differ-

nce among the results found for the sets. An interesting difference
s about the number of public fields: the higher the software system
ize, the lower the number of public fields. It leads to conclude that
ublic fields are strongly avoided in large software system. Hence,

able 6
hresholds for OO software metrics by software size.

Size (# classes) Afferent coupling
(good/regular/bad)

# Public fields
(good/regular/bad)

#
(

≤100 0–1/2–20/>20 0/1–10/>10 0
101–1000 0–1/2–20/>20 0/1–8/>8 0
>1000  0–1/2–15/>15 0/1–5/>5 0
) fitting to the Weibull distribution and (d) frequency detailed.

software developers seem to be more concerned about information
hiding in large systems.

The results of this analysis do not disagree with those of the
entire data set. Therefore, we  believe that the general result, listed
in Table 3, can be used to software systems in general, regardless
of the software system size.

6. Evaluation and discussion

Thresholds can aid specialists to apply metrics in their tasks.
Medicine is an example of field in which the work of the spe-
cialist is strongly supported by metrics and their thresholds. In
that field, many clinical laboratory tests are interpreted by using
reference values. Without knowing those values, diagnosing and
treating diseases would be extremely difficult. In Software Engi-

neering, thresholds of metrics can aid specialists in their tasks
of evaluating products and software processes, for instance. The
use of a metric without knowing its reference values is very
restricted because it may  be difficult to identify whether a situation

 Public methods
good/regular/bad)

DIT (typical value) LCOM
(good/regular/bad)

–20/21–30/>30 2 0/1–25/>25
–25/6–50/>50 2 0/1–20 />20
–30/30–60/>60 2 0/1–20/ >20
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Fig. 6. Public methods – (a) frequency, (b) frequency in log–log s

epresents a risk or a problem to the project, having as basis only a
umber without its proper interpretation.

In this section, we  evaluate and discuss the reference val-
es identified in this work. We  carried out two  experiments
o evaluate the usefulness of the proposed thresholds. The ref-
rence values considered in these experiments are the general
nes, which are listed in Table 3. In the first experiment,
e evaluate whether the thresholds support the identifica-

ion of problematic classes. In the second study, we evaluate
hether the thresholds support the identification of well-designed

lasses.
Applying a reference value can lead two results: or the ref-

rence value evaluates the property accurately, or it fails in
he evaluation. The evaluation is right if the range in which
he metric value falls corresponds to the actual assessment of
he property. In the experiments carried out in this work, we
onsider two possibilities of failure by using a threshold: false
ositive, when the range of the metric evaluates the class as
ad, but the manual inspection of the class does not iden-
ify problems in its structure; and false negative, when the
ange of the metric does not evaluate the class as bad, but the
anual inspection of the class identifies problems in its struc-

ure.
The first experiment was performed on the entire set of
lasses from which the reference values proposed in this work
ere derived. In this experiment, we considered the classes
hose measures correspond to the bad range of each eval-
ated metric. Such classes were manually inspected in order
(c) fitting to the Weibull distribution and (d) frequency detailed.

to evaluate the effectiveness of the reference values in help-
ing to identify classes with structural problems. It is possible
to identify occurrences of false positive in this way. However,
the identification of false negatives is impractical because it
would demand the manual inspection of a large number of
classes.

In the second experiment, we  analyzed JHotDraw.1 We  chose
to analyze this program because its design has been considered as
having high quality, and many other studies have used this pro-
gram as a case study (Seng et al., 2006; Czibula and Czibula, 2008;
Jancke, 2010; Kessentini et al., 2010). JHotDraw was  initially devel-
oped by Erich Gamma  and Thomas Eggenschwiler in order to be
an exercise of design patterns application, but has already a good
design (Riehle, 2000). Based on the assumption that JHotDraw pos-
sesses a good design, the aim of the experiment is to explore how
well the proposed thresholds can be used to identify good designs.
It is expected that most of the measures of JHotDraw will be clas-
sified in the good or regular ranges. Having this result will suggest
that the thresholds can evaluate a software design as good when it
really is, i.e., the negative result (a measure in a good range, indicat-
ing the absence of a design problem) is trustful. The results of the
second case suggest that when a measure falls in the good range
it is a sign of absence of design problems, and, hence, the pro-
general.

1 http://www.jhotdraw.org/.

http://www.jhotdraw.org/
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Table 7
First experiment – classes and their metrics #AF (afferent couplings), LCOM, DIT, #PF (public fields) and #PM (public methods).

Software Class #AF LCOM DIT #PF #PM

JasperReports net.sf.jasperreports.engine.xml.JRXmlConstants 51 957 1 347 44
KolMafia net.sourceforge.kolmafia.textui.DataTypes 27  261 1 70 27
JavaX11Library gnu.x11.Display 63 67 1 54 31
KolMafia net.sourceforge.kolmafia.request.UseItemRequest 29 67 4 41 18
KolMafia net.sourceforge.kolmafia.KoLmafia 163 2826 1 38 75
Hibernate org.hibernate.Hibernate 61 91 1 31 17
JavaX11Library gnu.x11.Window 53 1345 3 29 96
KolMafia net.sourceforge.kolmafia.KoLAdventure 25 147 3 25 20
JavaX11Library gnu.x11.extension.glx.VisualConfig 32  878 1 20 45
KolMafia net.sourceforge.kolmafia.request.GenericRequest 119 872 3 19 38
Jpilot  org.jpilotexam.ui.util.UIUtilities 24 21 1 18 4
CodeGeneration net.sf.cglib.core.CodeEmitter 59 2175 1 16 98
KolMafia net.sourceforge.kolmafia.persistence. 39 328 1 16 20

ConcoctionDatabase

Bcel  org.apache.bcel.generic.Type 55 24 1 16 10
YAWL org.yawlfoundation.yawl.engine.interfce. 44 2725 1 15 75

WorkItemRecord

KolMafia net.sourceforge.kolmafia.AdventureResult 144 46 1 15 31
KolMafia net.sourceforge.kolmafia.request.UseSkillRequest 26 285 4 15 19
KolMafia net.sourceforge.kolmafia.KoLCharacter 124 15507 2 13 188
JasperReports net.sf.jasperreports.engine.util.JRProperties 37 223 1 13 26
JasperReports net.sf.jasperreports.engine.design.JRDesignChart 31 4449 3 12 128
KolMafia net.sourceforge.kolmafia.request.EquipmentRequest 36 62 5 12 14
KolMafia net.sourceforge.kolmafia.persistence.SkillDatabase 26 206 3 11 22
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KolMafia net.sourceforge.kolmafia.swingui.panel.ItemM

Super  com.acelet.lib.CommonPanel 

.1. Experiment 1

In this experiment, we inspected classes whose measures were
lassified as bad, in order to compare this result with a qualitative
valuation.

Initially, we selected each class which has a number of afferent
ouplings greater than 20. This first filter resulted in 526 classes.
n this resultant set, we selected the classes with LCOM greater
han 20, obtaining 275 classes. Because the manual inspection of
ll those classes would be extremely laborious, we applied other
hree distinct filters to the resultant set: number of public methods
reater than 40, which resulted in 59 classes; DIT greater than 2,
hich resulted in 39 classes; and number of public fields greater

han 10, which resulted in 24 classes. We  chose to work with this
ast set due to the small enough number of classes. Hence, the
lasses analyzed in this experiment have number of afferent cou-
lings, LCOM and number of public fields classified in the bad range.
he data of those classes are shown in Table 7. In this experiment,
e did not evaluate the bad range of COF because this is a metric

or the system level and, hence, the evaluation of this metric will
emand the manual inspection of each system as whole. Follow-

ng, we indicate the structural problems that we  identified in the
lasses.

Information hiding violation: some of the classes have public non
constant fields. These fields should be encapsulated. The follow-
ing classes have this structural problem:

 gnu.x11.Display
 gnu.x11.Window
 gnu.x11.extension.glx.VisualConfig
 net.sourceforge.kolmafia.request.GenericRequest
 net.sourceforge.kolmafia.swingui.panel.
ItemManagePanel

 net.sourceforge.kolmafia.KoLCharacter

com.acelet.lib.CommonPanel

Utility class: three of the evaluated classes have static methods
with distinct purposes. Possibly, each of these classes could be
Panel 28 53 7 11 15
36 75 5 11 8

split, since it seems they have many responsibilities. The follow-
ing classes have this problem:

- net.sf.jasperreports.engine.xml.JRXmlConstants
- net.sourceforge.kolmafia.textui.DataTypes
- org.jpilotexam.ui.util.UIUtilities

• Data class: some of the classes can be considered as the code smell
Data class, since they only have data and methods get and set.  The
following classes have this code smell.

- gnu.x11.extension.glx.VisualConfig
- org.yawlfoundation.yawl.engine.interfce.

WorkItemRecord
- net.sf.jasperreports.engine.util.JRProperties
- net.sf.jasperreports.engine.design.JRDesignChart

• Low internal cohesion: most of the classes are candidate for refac-
toring because they do not seem to have a single role in the
system. The following classes have this problem:

- gnu.x11.Display
- net.sourceforge.kolmafia.request.UseItemRequest
- net.sourceforge.kolmafia.KoLmafia
- org.hibernate.Hibernate
- net.sourceforge.kolmafia.KoLAdventure
- net.sourceforge.kolmafia.request.GenericRequest
- net.sf.cglib.core.CodeEmitter
- net.sourceforge.kolmafia.persistence.

ConcoctionDatabase
- org.apache.bcel.generic.Type
- net.sourceforge.kolmafia.AdventureResult
- net.sourceforge.kolmafia.request.UseSkillRequest
- net.sourceforge.kolmafia.persistence.SkillDatabase
- net.sourceforge.kolmafia.request.EquipmentRequest
The metrics number of afferent couplings, LCOM, and the num-
ber of public fields of all those classes were classified in a bad range
of the proposed thresholds. The manual inspection of those classes
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Table 8
Second experiment – classes and their metrics #AF (afferent couplings), LCOM, DIT, #PF (public fields) and #PM (public methods).

Class #AF LCOM DIT #PF #PM

org.jhotdraw.geom.Geom 50 276 1 4 42
org.jhotdraw.draw.AbstractFigure 49 1339 2 0 45
org.jhotdraw.draw.DefaultDrawingView 34 2573 4 1 58
org.jhotdraw.draw.BezierFigure 25 184 4 0 51
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org.jhotdraw.draw.action.ButtonFactory 23 

assively revealed structural problems on them. In many cases,
he evaluated class does not play a single role in the system, what
etermines its low internal cohesion.

Although LCOM has not been considered as an ideal way  to
ssess class cohesion, the application of its threshold associated
ith the threshold of number of afferent couplings led to identify

lasses with poor cohesion in this experiment.
The threshold of number of public fields led to identify classes

hich are merely data depositories and classes which use public
elds in such way they do not comply with the information hid-

ng principle. Classes which are repositories of constants do not
ecessarily represent violation of good practices of design. How-
ver, classes with public non constant fields should be refactored
o encapsulate the fields.

There are eight classes analyzed in this experiment which had
heir number of public methods classified as bad by the threshold
f this metric. The inspection of those classes revealed that most of
hem have many responsibilities and are hard to understand. Some
f them are data classes.  Therefore, applying the threshold of this
etric can aid to identify classes with such problems.
Five classes from the analyzed set have DIT greater than 3. A

ommon observation in those classes is that they and their super-
lasses possess structural problems. In some cases, there are signs
f improper use of inheritance. Hence, applying the DIT thresh-
ld could aid to identify unsuitable use of inheritance in software
ystems.

The aim of this experiment was to evaluate the practical use
f the proposed thresholds. We  explored whether classes with
easures classified as bad by the proposed thresholds have struc-

ural problems. For this purpose, we compared the results of the
etrics with a qualitative evaluation of the analyzed classes. The

lasses analyzed in this experiment had their measures classified
s bad by the proposed thresholds. The manual inspection of those
lasses revealed that they have structural problems. Hence, in this
xperiment, the evaluation of classes by applying the proposed
hresholds did not lead to false positive occurrences. The obser-
ations from this experiment suggest that applying the proposed
hresholds can help to identify classes which violate design prin-
iples. Therefore, when the manual analysis of classes in large
ystems would be impractical, metrics with their respective thresh-
lds can be effectively used for guidance in detection of design
aws.

.2. Experiment 2

In this second experiment, we explored whether the pro-
osed thresholds evaluate rightly software systems which have
ood design. For this purpose, we used a software system whose
esign has been qualitatively evaluated as good by many other
esearchers, JHotDraw. On the assumption that this program has

eally a good design and that the proposed thresholds are valid,
he application of these thresholds should evaluate the program as
ood or regular at least. JHotDraw has 1095 classes and its COF is
.003. According to the threshold of this metric, this value is clas-
496 1 8 69

sified as good. Following, we describe the evaluation of JHotDraw
according to the proposed thresholds of the other metrics.

• Afferent couplings: 29 classes have more than 20 afferent cou-
plings, 384 classes have 2–20 afferent couplings, and 682 classes
have less than 2 afferent couplings. Hence, 97% of classes from
JHotDraw are classified as good or regular by the thresholds in
the aspect of afferent couplings.

• LCOM: 215 classes have LCOM greater than 20, 335 classes have
LCOM from 1 to 20, and 545 classes have LCOM equals to zero. The
application of the threshold identified for LCOM classifies 80% of
classes from JHotDraw as good or regular.

• DIT: 344 classes have DIT greater than 2, whereas 751 have DIT
up to 2, what corresponds to 70% of the classes. The mean value
of DIT in JHotDraw is 2.3, indicating that the use of inheritance in
JHotDraw is consistent with the typical value identified for this
metric.

• Number of public fields: 945 classes have no public fields, 146
classes have 1 to 10 public fields, and only 4 classes have more
than 10 public fields. Nearly all classes from JHotDraw are evalu-
ated as good or regular,  by using the threshold of number of public
fields.

• Number of public methods: 925 classes have up to 10 public meth-
ods, 156 classes have 11–40 public methods, and 14 classes have
more than 40 public methods. Therefore, the threshold of num-
ber of public methods evaluates 99% of classes from JHotDraw as
good or regular.

Considering each metric individually, a very low number of
classes were evaluated as bad by the proposed thresholds. We  also
used association of metrics to evaluate the software system in the
following way. Only 18 classes have LCOM and number of afferent
couplings classified as bad. In this resultant set of classes, only one
class, named AttributeKeys, has the number of public fields clas-
sified as bad. This class, however, is a repository of constants and
it does not necessarily represent a violation of design principles. In
that resultant set of classes, six classes have DIT greater than 2, as
well six classes have number of public methods classified as bad.
Data of these classes are shown in Table 8. Considering all metrics,
none of the classes is evaluated as bad.

The observations of this experiment show that the proposed
thresholds evaluate JHotDraw design as good in general. If one con-
siders as correct the evaluation that community has made about
JHoDraw, this result indicates that the application of the proposed
thresholds does not lead to false negative occurrences, i.e., when
a measure is classified in the good or regular ranges, it is a sign
of absence of design problems. Therefore, the observations of this
experiment suggest that the proposed thresholds can effectively
evaluate a design as good if it really is.

6.3. Discussion
The proposed thresholds were effective in the experiments. The
achieved results shows that when a measure is classified as bad, it
does not mean the class or the system definitely violates a princi-
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le design. However, it should be taken as a sign that there might
e something wrong. When a measure falls in the bad range, it is

 symptom which strongly indicates a deeper problem. For DIT,
e identified a typical value instead of ranges. Considering that
eep inheritance trees might make software maintenance hard, it

s desirable to keep DIT low. Hence, classes with DIT higher than the
dentified typical value should be taken as a symptom that inheri-
ance might be misused in the software system, and, thus, should
e viewed as a recommendation to refactor the inheritance tree.

The ranges good and regular were not evaluated individually
ecause it is difficult to assert if a class has good or regular quality
ased on qualitative analysis. JHotDraw, the software system taken
o evaluate the good and regular ranges, is supposed to have a good
esign, but possibly it could be improved. Hence, we  assumed that
he target software has quality regular at least, and we evaluated
he ranges good and regular in conjunction. For all metrics, most of
lasses of JHotDraw were ranked as good, the second largest group
f classes was ranked as regular, and only a few classes were ranked
s bad.  This result is consistent with the recognized high internal
uality of the target system. Therefore, from the observations of
his experiment, the ranges good and bad, as well the mean value
f DIT, showed themselves to be also reliable.

Another insight on this experiment is that the distributions of
he metric values of the target program have the same proper-
ies which were observed in the applications used to derive the
hresholds: the mean value of DIT is compatible with the identi-
ed typical value of this metric, and for the other metrics, most of
lasses presents low metric values, whereas just a few classes have
igh metric values. This result supports the finding that there is a
ingle distribution which can model values of a metric regardless
ize, type or application domain of software systems.

The regular range can be considered as a sign that the software
esign should be improved for even better quality, although it does
ot necessarily represents an anomalous occurrence. However, the

rontier of this range with the bad range is subtle and is not too accu-
ate. Since the method employed to derive the ranges was based
n graphical analysis, one may  derive other bounds for the regular
anges from the same graphics and employing the same analysis.
or instance, one can derive the upper bound of the regular range
or afferent couplings as 15 or 25, instead of 20. Therefore, values of

etrics near to the upper bound of the regular range should also be
nterpreted as an indicator of possible design principle violation.

The observations of the study cases carried out in this research
howed that the proposed thresholds can aid software engineers
o identify design flaws and code anomalies.

. Limitations

Software metric tools might interpret and implement software
etrics differently. From the viewpoint of the application of the

esults, different interpretations of the software metrics represent
 threat to the validity of the study. To avoid this problem, the
nterpretation to be used must be the one we described in this
aper.

The sample of applications used in this work might be itself a
hreat to the validity of the study. Although the sample contains a
arge number of applications, it is not possible to ensure that they
re the best instances of the common practice. In spite of using
ome well-known open-source software systems in this study, we
re not able to confirm that all programs in the sample possess
igh-quality. We  evaluated two programs qualitatively: BCEL and
obocode. BCEL is a library for manipulation of bytecodes of Java

lasses we used to implement Connecta (Ferreira et al., 2008). We
onsider BCEL well constructed, modular and easy to use. Robocode
s a popular programming game in which Java is used to program
obots to do battle against each other. Our evaluation of source
s and Software 85 (2012) 244– 257

code of Robocode concluded that its classes are well constructed,
most of them have no public fields and have a short number of
methods. However, qualitative evaluation of software structure is
error-prone, especially for large software systems. In addition, we
considered only Java software in this study. It is possible that the
thresholds are influenced by the program language, what would
limit the threshold generalization.

One may  claim for invalidity of the thresholds of LCOM, since the
imperfections of this metric would cause thresholds with no mean-
ing. The main problem with this metric is that when it results in a
zero value, it does not necessarily indicate good cohesion. However,
this is a limitation of the metric and not of the identified thresholds.
The main reason why we chose to evaluate this metric is because
it is widely used. Hence, in spite of limitations of this metric, we
believe that the identified thresholds for it are still valid and could
be useful for developers which use LCOM. Further studies are nec-
essary to identify thresholds for other cohesion metrics in order to
provide better software evaluation by means of cohesion.

The experiments we carried out to evaluate the proposed
thresholds are based on the qualitative assessment of software
systems. In the first experiment, we inspected manually classes
from different software systems. This evaluation can be error-prone
because, in some cases, the proper assessment of those software
systems requires a solid knowledge of the problem domain treated
by them. In the second experiment, we  evaluated a software
system whose design has been considered good in prior works.
This premise, however, depends on the validity of those previous
works.

8. Conclusions

This work presents a study carried out on a large sample of
object-oriented, open-source programs. We  analyzed data from 40
programs developed in Java, including tools, libraries and frame-
works, of varying sizes and from 11 application domains, in a total
of more than 26,000 classes. From the achieved results, we  suggest
thresholds for six object-oriented software metrics: COF, LCOM,
DIT, afferent couplings, number of public methods and number
of public fields. The study concluded that values of those met-
rics, except DIT, can be modeled by a heavy-tailed distribution.
This property means that, for most metrics, there is a low number
of occurrences of high values and a far higher number of occur-
rences of low values. Values of DIT can be modeled by the Poisson
distribution, having mean value 2.

Based on the most commonly values found in practice, we
derived general thresholds for object-oriented software metrics,
and thresholds by application domain, size and type (tool, library
and framework) of software system. As we  did not find relevant
difference among them, we  believe that the general thresholds
can be applied to object-oriented software in general. The identi-
fied thresholds were evaluated by means of two experiments. The
results of this evaluation indicate that the proposed thresholds can
help to identify classes which violate design principles. Moreover,
the achieved results suggest that the thresholds can effectively
evaluate a design as good when it really is.

The proposed thresholds were derived from common practice.
This method could be interpreted as misleading, since the common
practice not necessarily represents the good practice. However, the
good ranges of the derived thresholds showed themselves to be
compatible with some well-known design principles. For instance,
in a software system, every module should communicate with as
few others as possible. The good range of COF is 0.02, and the good

range of number of afferent couplings is 1, reflecting that design
principle. The good range of number of public fields is 0, what is
compatible with the principle avoid making data public.  The good
range of LCOM is 0, what is compatible with the principle that a
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lass should have a high cohesion. A large number of methods in
 class is a sign that the class may  have too many responsibilities.
he good range of number of public methods is 0–10, reflecting that

 class should have few responsibilities. The typical value identi-
ed for DIT is 2, what is compatible with the principle favor object
omposition over class inheritance.

The results of this study suggest that the method used to derive
he thresholds can lead to identify proper thresholds for software

etrics. However, the effectiveness of the method depends on the
ample of software systems because if a threshold is obtained by
oorly designed software systems, this threshold would not be
ompatible with design principles.

There are dozens of software metrics. In the scope of this work,
e defined thresholds for 6 of them. The results of this work can

id software engineers in evaluating software systems by means of
etrics. Nevertheless, effort to define thresholds for other software
etrics is necessary in order to encourage the effective application

f metrics in Software Engineering. We  suggest using the approach
f this study in future works in order to define reference values for
ther software metrics.

cknowledgments

This work was sponsored by FAPEMIG, as part of the project
ONNECTA Process: CEX APQ-3999-5.01/07. Fapemig.

eferences
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