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Mutation testing has been used to assess the quality of test case suites by analyzing the ability
in distinguishing the artifact under testing from a set of alternative artifacts, the so-called mu-
tants. The mutants are generated from the artifact under testing by applying a set of mutant
operators, which produce artifacts with simple syntactical differences. The mutant operators
are usually based on typical errors that occur during the software development and can be
related to a fault model. In this paper, we propose a language—named MuDeL (MUtant
DEfinition Language)—for the definition of mutant operators, aiming not only at automating
themutant generation, but also at providing precision and formality to the operator definition.
The proposed language is based on concepts from transformational and logical program-
ming paradigms, as well as from context-free grammar theory. Denotational semantics formal
framework is employed to define the semantics of the MuDeL language. We also describe
a system—named mudelgen—developed to support the use of this language. An executable
representation of the denotational semantics of the language is used to check the correctness
of the implementation of mudelgen. At the very end, a mutant generator module is produced,
which can be incorporated into a specific mutant tool/environment.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Originally, mutation testing [1,2] is a testing approach to assess the quality of a test case suite in revealing some specific
classes of faults, and can be classified as a fault-based testing technique. Although it was originally proposed for program testing
[2], several researchers have applied its underlying concepts in a variety of other contexts, testing different kinds of artifacts,
e.g., specifications [3–7], protocols testing [8] and network security models [9]. Moreover, mutation testing has been employed
as a useful mechanism to improve statistical validity when testing criteria are compared, such as in [10].

The main idea behind mutation testing is to use a set of alternative artifacts (the so-called mutants) of the artifact under
testing (the original artifact) to evaluate test case sets. These mutants are generated from the original artifact by introducing
simple syntactical changes and, thus, inducing specific faults. Usually, only a simple modification is made in the original artifact.
The resulting mutants are the so-called 1-order mutants [11]. A k-order mutant can be thought of as a mutant in which several
1-order mutations were applied [12]. The ability of a test case suite in revealing these faults is checked by running the mutants
and comparing their results against the result of the original artifact for the same test cases.

The faults considered to generate the mutants are based upon knowledge about errors that typically occur during software
development and can be associated to a fault model. In themutation testing approach, the fault model is embedded in themutant
operators [13]. A mutant operator can be thought of as a function that takes an artifact as input and produces a set of mutants,
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in which the fault modeled by that particular operator is injected. The fault model has great impact in the mutation testing cost
and effectiveness, and, hence, so does the mutant operator set. In general, when the mutation testing is proposed for a particular
artifact, one of the first steps is to describe the fault model and a mutant operator set.

Considering the important role of mutant operators to the mutation testing, their definition and implementation are ba-
sic issues for its efficient and effective application. The mutant operator set has to be assessed and evolved to improve its
accuracy w.r.t. the language in question. This is usually made by theoretical and/or empirical analysis. Specifically for em-
pirical analysis, it is necessary to design and construct a prototype or a supporting tool, because manual mutant generation
is very costly and error-prone. However, the tool design and construction are also costly and time-consuming tasks. An ap-
proach that can be used to tackle this problem is to establish prototyping mechanisms that provide a low-cost alternative,
making easier the evaluation and evolution of the mutant operators without requiring too much effort to be expended in
developing tools. At the very end, the produced mutant generator module may be incorporated into a specific mutant tool/
environment.

Another important issue to be considered is that, given the already mentioned impact on the mutation testing effectiveness,
mutant operators must be described in a way as rigorous as possible, in order to avoid ambiguities and inconsistencies. This
is similar to what happens to other artifacts of software engineering. Several initiatives towards defining mutant operators for
different programming languages can be found in the literature [14–19]. Although we can identify some approaches in which
the operators are formally defined (e.g., [20]), in most of the cases, the definition is informal and based on a textual description
of the changes that are required in order to generate the mutants (see, e.g., [14]).

From theseworks, we can observe that there are common conceptual mutations amongst different languages, such as Fortran,
C, C + +, Statecharts, FSMs and so on, although this point has not been explicitly explored by the authors. This fact motivated
us to investigate mechanisms to design and validate mutation operators as independent as possible of the target language. This
same scenario leads to opportunities to reuse the knowledge underlying the mutations (i.e., effectiveness, costs related to the
generation of mutants, to determination of equivalent mutants, to the number of test cases required to obtain an adequate test
case set) of particular mutations, and of the related operators [21,22].

In this paper, we present a language—calledMuDeL (MUtant DEfinition Language)—for the definition of mutant operators,
a tool to support the language and case studies that show how these mechanisms have been employed in several different
contexts. The language was designed with concepts from transformational [23] and logical [24] paradigms. Its motivation is
threefold. Firstly, MuDeL provides a way to precisely and unambiguously describe the operators. In this respect, MuDeL is
an alternative for sharing mutant descriptions. We employed denotational semantics [25,26] to formally define the semantics of
MuDeL language [27].Observe that thedescriptionof themutant are syntaxdrivenand the semantics of themutant itself arenot
taken into consideration. Secondly, the mutant operator description can be “compiled” into an actual mutant operator, enabling
the mutant operator designer to validate the description and potentially to improve it. With this purpose, we have implemented
the mudelgen system. Given a mutant operator defined in MuDeL and the original artifact, the mudelgen compiles the
definition and generates the mutants, based on a given context-free grammar of the original artifact. The denotational semantics
ofMuDeL was used as a pseudo-oracle (in the sense discussed by Weyuker [28]) in the validation of the mudelgen [27]. And
finally, by providing an abstract view of the mutations, MuDeL eases the reuse of mutant operators defined for syntactically
similar languages. For example, although the actual grammars of, say, C and Java are quite different, they both share several similar
constructions, and, by carefully designing their grammars and the mutant operators, one can reuse the mutant operators that
operate on the same construction, e.g., deleting statements, swapping expressions, and so on, on both languages.We have applied
MuDeL and mudelgen with the languages C, C++ and Java and with the specification languages FSMs and CPNs. In particular,
we used them in the context of Plavis project, which involves Brazilian National Space Agency. We observe that for languages
with similar grammar, we could reuse not only the conceptual framework behind the mutation, but also the MuDeL mutant
operators themselves.

Mutation testing demands several functionalities other than just generating mutants, e.g., test cases handling, mutant execu-
tion and output checking. Both MuDeL and mudelgen are to be used as a piece in a complete mutation tool, either in a tool
specifically tailored to a particular language or in a generic tool—a tool that could be used to support mutation testing application
having the most used languages as target languages. In fact, MuDeL and mudelgen are steps towards the implementation of
such generic tools.

This paper is organized as follows. In Section 2 we discuss some related work and summarize the main features of mu-
tant operators, highlighting the requirements for a description language for this specific domain. In Section 3 we present the
MuDeL language and illustrate its main features. In Section 4 we show results from the application of the language we have
made up to now, emphasizing the cases where we could effectively reuse mutant operator descriptions in different languages.
In Section 5 we discuss relevant implementation aspects of the mudelgen system and depict its overall architecture. Finally, in
Section 6 we make concluding remarks and point to further work.

2. Mutant operators

Mutation testing has been applied in several context, for several different languages. Therefore, mutant operators have been
defined for those applications. The definitions are usually made in an ad hoc way, ranging from textual descriptions to formal
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definitions. Notwithstanding, to the best of our knowledge,MuDeL is the first proposal to provide a precise language to describe
mutant operators.

Mutation testing was first applied for the FORTRAN language [15]. DeMillo designed 22 mutant operators and developed the
MOTHRA tool. The mutant operator descriptions were textual and heavily based on examples. Although the examples are very
useful to illustrate the mutant operator, describing it by these means is ambiguous, and does not promote reuse.

Agrawal [14] proposed 77 mutant operators for the C language. The definition were based on the FORTRANmutant operators.
Most C mutant operators are basically a translation of the respective FORTRANmutant operators. However, since the C language
has amuch richer set of arithmetic and logical operators, there aremoremutant operators for theC language. These operatorswere
implemented in the Proteum tool [29]. (Actually the mutant operators implemented by Delamaro et al. [29] are adapted versions
of the Agrawal's ones.) Afterwards, Delamaro et al. [18] proposedmutant operators for testing the interfaces betweenmodules in
the C language, named interface mutation. The Proteum tool was extended with these operators, deriving the Proteum/IM [18].

Fabbri [30] investigated mutation testing concepts in the context of specification techniques for reactive systems. Mutant
operatorswere designed for Petri nets, Statecharts and finite statemachines (FSMs). Differently from the above approaches, those
mutant operators were formally defined, using the same formalism of the corresponding technique.

Kim et al. [16] have proposed a technique named “hazard and operability studies” (HAZOP) [31] to systematically derive
mutant operators. The technique is based on two main concepts. It first identifies in the grammar of the target language where
mutationmay occur and then defines themutations guided by “GuideWords”. They applied their technique to the Java language.
Although the resulting operators do not significantly differ from previous works, the proposed methodology is an important step
towards a more rigorous discipline in the definition of mutant operators.

From these examples, we can summarize the characteristics of mutant operators used in different context. Usually, from a
single original artifact, a mutant operator will generate several mutants. For example, a mutant operator that exchanges awhile
statement into a do–while statement will generate as many mutants as the number of while statements in the artifact. In each
mutant, a singlewhilewill be replaced by a do–while.

The number of mutants that can be generated from a particular artifact is very large. Considering an original artifact, any
other artifact in the same language could be considered as a mutant, due to the informal and broad definition of “syntactical
change” necessary to generate a mutant. To keep the number of mutants at a tractable level, only mutants with simple changes
are considered. Roughly speaking, a change is considered simple when it cannot be decomposed into smaller, simpler changes.
For that reason, to describe a mutant operator, usually only one change should be defined.

An important point that should be highlighted is that a change being simple does not mean it is straightforward. The syntax
of the artifact should be taken into account, in order to generate syntactically valid mutants. Concerning this point, a mechanism
based on simple text replacement is not enough. It is necessary to embody some mechanisms to guarantee that the mutants
are also valid artifacts in the original language. The pattern replacement, which is typical in transformational languages, is more
suitable in this context.

Sometimes the single logical change implies in changing more than one place in the artifact. For example, a mutant operator
for exchanging two constants must indicate that two different but related changes, one in each place where the exchanging
constants appear. Moreover, in some cases, although being treated as a single entity, the mutant operator involves different
changes in different places. Therefore, it is necessary to be able to relate these different changes into the mutant operator.

Mutations can be classified into twomajor groups: context-freemutations and context-sensitive ones. Context-freemutations
are those that can be carried out regardless the syntactical context inwhich themutated part occurs. Conversely, context-sensitive
mutations depend upon the context, e.g., the variables visible in a specific scope. Most mutant operators in literature [3,6,14,17]
involve context-free mutations. Even for a context-sensitive language, there can be context-free mutations. An example of
context-free mutations is the change of “x = 1” by “x + = 1”, since wherever the first expression is valid, so is the second.
However, the change of “x = 1” by “y = 1” is context-sensitive, since the second expression will not be valid unless y has
the same declaration status as does x. To tackle this difficult problem, a language for describing mutants should either embody
features to specify context-sensitive grammar or provide some way to gather information from the context in some kind of
lookup table.

3. MuDeL language

Based on the characteristics of mutants, we designed a language to allow the definition of mutants in a way as easy, language-
independent and natural as possible. However, due to pragmatical issues, we have taken some design decisions that trades off
between the goals listed above and the possibility of implementing of an efficient supporting tool. Therefore, MuDeL does
not provide a completely language-neutral mechanism for describing and implementing mutant operator. Indeed, the syntax of
the target language should be somewhat embodied in the mutant definition.MuDeL language is, thus, a mixed language that
brings together concepts of both the transformational and the logical paradigms. From the transformational paradigm it employs
the concept of pattern matching and replacement. The transformational language that is closest toMuDeL is TXL [32,33]. TXL
has bothmatching and replacement operations. However, TXLworks in a one-to-one basis and has a imperative-like control flow,
making unnatural to describe mutant operators. Instead, the control flow ofMuDeL is inspired in Prolog's. The most important
similarity of MuDeL and Prolog's is, however, the way a mutant operator definition is interpreted. Like a Prolog clause,
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Fig. 1. The pattern tree for `( :a ) * :b'. The types of `:a' and `:b' have been declared as 〈A〉 and 〈B〉, respectively.

a MuDeL definition can be thought of as a predicate. A mutant should satisfy the “predicate” of a mutant operator definition
in order to be a mutant of this operator w.r.t. the respective original artifact. However, like a findall predicate in Prolog, the
MuDeL definition can be used to enumerate all mutants that satisfy it. This is made by the mudelgen system, described in
Section 5.

3.1. Basic notations

In order to be able to handle different kinds of artifacts, we should choose an intermediate format to which every artifact
can be mapped. Assuming that most artifacts can be thought of as elements of a language defined by a context-free grammar,
the use of syntax tree has an immediate appeal [34]. Therefore, in the MuDeL language, every artifact, either a program or a
specification, is mapped into a syntax tree. The mapping is carried out by parsing the artifact based on a context-free grammar
of the language. The syntax tree can be handled and modified in order to represent the mutations. It is thus necessary a way to
describe how the syntax tree must be handled.

We define a setM ofmeta-variables1 and extend the syntax tree to allow for leaves to be meta-variables as well as terminal
symbols. Moreover, in this extension, the root node can be any non-terminal symbol (not only the initial one, as in the syntax
trees). We call these extended syntax trees pattern trees, or, if it is unambiguous from the context, just patterns. Each meta-
variable has an associated non-terminal symbol, which is called its type. Ameta-variable can be either free or bound. Every bound
meta-variable is associated to a sub tree that can be generated from its type. Therefore, a syntax tree is just a special kind of
pattern tree; a kindwhere everymeta-variable (if any) is bound. Fig. 1 shows an example of a pattern tree. As a way to distinguish
from ordinary identifiers, we prefix the meta-variables with a colon (:). Even in the presence of meta-variables, the children of a
node must be in accordance with its artifact, i.e., a meta-variable can only occur where a non-terminal of its type also could.

To specify patterns we use the following notation. The simplest pattern is formed by an anonymous meta-variable, as its root
node. This pattern is expressed just by the non-terminal symbol that is its root node enclosed in squared brackets. For example,
[A] is a pattern whose root node is an anonymous meta-variable of type 〈A〉. In most cases, such a simple notation will not be
enough to specify pattern trees. One can use a more elaborated pattern notation, instead. The non-terminal root symbol is placed
in squared brackets, as before, but following it, in angle brackets, a sequence of terminal symbols and meta-variables is included.
For example, the pattern tree in Fig. 1 is denoted by [S<( :a )* :b>]. Note that inside the angle brackets the grammar of the
artifact, rather than theMuDeL's grammar, is to be respected. Nonetheless,meta-variables come fromMuDeL itself and, thus,
the previous pattern will only be valid if the meta-variables :a and :b are declared with proper types. Therefore, instead of being
just a language,MuDeL is indeed ameta-language, in that aMuDeL's definition is valid or not w.r.t. a given source grammar.
In other words, given a source grammar of an artifact language, we can instantiate MuDeL language for that grammar. The
source grammar determines the form and the syntax of the pattern trees.

The unification of a tree and a pattern is in the kernel of any transformational system. In the unification, two pattern trees c and
m are taken and an attempt to unify them is done. The unification can either fail or succeed. In case of success, the meta-variables
in the pattern trees are accordingly bound to respective tree nodes, in a way that makes them unrestrictly interchangeable. In
case of failure, no meta-variable binding occurs. The unification algorithm is similar to Prolog's one [24]. Fig. 2 shows an example
of a successful unification. The dashed line indicates the meta-variable bindings.

3.2. Operator structure

A mutant operator definition has three main parts: operator name, meta-variable declarations and body. The operator name
declaration comes first. This name is just for documentation purposes and has no impact in the remaining parts of the definition.
Next, there is the optional section of meta-variable declarations. If present, this section is started by the keyword var followed
by a list of one or more meta-variable declarations. A meta-variable declaration is a meta-variable name followed by a pattern
tree, which is its type. The last section, enclosed by the keywords begin and end operator, is the body of the operator, which

1 We chose the term meta-variable instead of the term variable, which has a particular meaning in most language to whichMuDeL can be applied.
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Fig. 2. An example of unification.

Fig. 3. A simple mutant operator. For every statement in the program, a mutant is generated by “deleting” the statement.

is a compound mutation operation (explained later). This operation will be executed w.r.t. the syntax tree of the original artifact.
Fig. 3 presents a mutant operator definition, illustrating its overall structure. This mutant operator, whose name is STDL,
declares the meta-variable :s with the type 〈statement〉, and has a simple operation as its body, that, as will be clarified later,
generates mutants replacing nodes with type 〈statement〉 by a semi-colon (the null statement), according to the grammar of the C
programming language. Observe that there is no explicit indication of which node should be considered by the replace operation,
which, in this case, implies that the whole tree should be used.

The body of a mutant definition written in MuDeL is composed by a combination of operations. The syntax of MuDeL's
body part can be divided into operations, combiners and modifiers. An operation can be thought of as a predicate that either
modify the syntax tree or control the way the remain operations act. The operations can be joined by combiners. The behavior of
an operation can be altered by modifiers.

If a set of operations must be used in several different points in a mutant operator, it is possible to declare a rule with
these operations and invoke the rule wherever necessary. Rules can be thought of as procedures of conventional programming
languages. In this way, mutant operators can be defined in a modular way. Rules can be defined in a separated file and imported
in the mutant operator, allowing to reuse similar operations among a set of related mutant operators.

3.3. Operations

An operation is a particular statement about how to proceed in the generation of a particular mutant. An operation takes place
in a particular state, which is formed by the current syntax tree. Every operation, being it simple or compound, can result in zero
or more alternative syntax trees. If it results in zero alternative syntax tree, we say that the operation result in failure, i.e., that it
fails.

3.3.1. Replace operation
The replace operation is the most important one inMuDeL language, since it is responsible for altering the original syntax

tree into the mutated one. It requires three arguments: the tree c to be altered, the pattern tree r, that is to be unified with c, and
the pattern tree b, that will replace c in the case of a successful unification of c and r. Both r and b can contain meta-variables that
allow to use parts of c in the replacement.

The syntax of a replace operation is

c @@ replace r by b

where c must be a meta-variable.
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:C

:B

:A

type(’z’, ’int’)

(’x’, ’float’)

type(’x’, ’int’)

Fig. 4. Facts in the syntax tree.

3.3.2. Match operation
Thematching operation can be used to select where the replacement is applied. Thematching operation takes two arguments:

a tree c and a pattern tree m. It tries to unify c, which must be a meta-variable, and m, binding meta-variables in m if necessary.
The bindings are still active after the unification, allowing to select parts of c to be further handled.

3.4. Assert and consult operations

Most of the mutations can be made in a context-free basis. This is true due to fact that if the original artifact is syntactically
valid, the mutant operator can safely rearrange some part of it and ensure the mutant is also syntactically correct. However,
there are some mutant operators that require some information that comes from the context in which the mutated parts are
located. For instance, when exchanging a variable by another one, it is necessary to check whether their declared types are
compatible. Strictly speaking, this could be made with the operations, modifiers and combiner described. Nonetheless, such a
way of definition will be quite awkward. We tackle this problem by enriching the syntax tree with attributes [35]. The attributes
are a set of tuples that has a name and a set of values and is associated to a node in the syntax tree. The attributes are calculated
and stored when the syntax tree is built. (See Section 5 for a discussion on how the attributes are calculated.)

To access the values of the attributes, MuDeL has the consult operation. The consult operation takes an starting tree
node c, an attribute name n, and a list of meta-variables or pattern trees, which represent the arguments of the attribute. The
operation will look for any tuple with name n in the tree node c. If it finds any, it will try to unify the list of arguments with
the list of arguments in the tuple. Each tuple that successfully matches the list of arguments will produce an alternative state.
However, when there is no tuple in c with name n, the consult operation will recursively search in the parent node of c, until a
node with such a tuple is found or it has already searched in the root of the tree (that has no parent). Observe that this upward
search embodies the way context information is usually dealt with. It also allows the correct dealing with a scope of most typed
languages, in which the attributes of an entity can be overridden in an inner scope. The consult operation can be compared to
the Prolog consult predicate. However, the Prolog's consult predicate uses a single global base of facts, while inMuDeL the
facts are scattered over the tree and are searched in a hierarchical way. The operation can be negated, analogously to thematching
operation. Fig. 4 illustrates how attributes are stored and retrieved in syntax trees. We annotate in each which tuples are defined.
If the operation

:C @@ consult type with :v :t

is executed with :v unified to `x', it will fail, since there is no fact about `x' in :C. However, if the same operation is executed with
:v unified to `z', it will succeed with the unification of :t to `int'. If the operation

:B @@ consult type with :v :t

is executed with :v unified to `x', it will succeed with the unification of :t to `float'. If the same operation is executed with :v
unified to `z', it will succeed with the unification of :t to `int', since this fact is stored in the parent of :B. If the operation

:A @@ consult type with :v :t

is executed with :v unified to `x', it will succeed with the unification of :t to `int'. Observer that the facts in :Bwere overridden.
Inmost of the cases, the attributes that are consulted are stored in the treewhen it is built (see Section 5). However, sometimes,

it may be useful to also be able to store tuples in the tree. This is made with the assert operation. It takes a context tree c, an
attribute name n, a list of meta-variables or patterns, which represents the arguments of the tuple, and a list of patterns that
represent where the tuple should be stored. The operation will search upwards from c for a tree node that matches any of the
patterns. If it finds such a node, the tuple is stored in it. Otherwise, the tuple will be stored in the root node.

3.4.1. Donothing, abort and cut operations
We include some atomic operations that enhance the control of generation of the mutants. They control the set of alternative

states the next operations will deal with. The donothing operation, as its name suggests, does nothing at all. It succeed exactly
once. It can be thought of as a placeholder for situations where an operation is necessary but no effect is indeed required. It is
similar to the true predicate of Prolog.
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Fig. 5. Replace operator.

Fig. 6. An example of the application of operation in Fig. 5.

The abort operation will ignore any alternative state. It always results in failure and, therefore, can be used (in conjunction
with the combiners) to avoid generated some mutants. It is similar to the false predicate of Prolog.

The cut operation will prune the set of alternative states, in such a way that only the first alternative state will be considered.
It is similar to, and was inspired by, the ! of Prolog.

3.5. MuDeL combiners

Two or more operations can be combined into a compound operation using the combiners ;; and ||. They were inspired in
the Prolog operators comma (,) and semi-colon (;).

The first combiner is the sequence one, which is represented by ;; in the MuDeL syntax. The compound operation a;;b
incorporates the effects of both a and b. Every time the operation a results in success, the operation b is applied. As a side-effects,
if the operation a does not succeed, the operation bwill be ignored.

The second combiner is the alternative one, which is represented by || in theMuDeL syntax. The compound operation a||b
indicates that both a and b are alternative operations for the same purpose. Therefore, the results of either one can appear in a
mutant. Actually, the compound operation succeeds every time the operation a does and every time the operation b does.

The combiners can beusedwithmore than twooperations. For instance,we can join three operations as ina;;b;;c.Moreover,
both combiners can be used together. In this case, the combiner ;; has a higher precedence than the combiner ||. The operations
can be grouped with double parenthesis to overpass the precedence. For instance, in the compound operation ((a||b));;c, the
operation cwill be applied to the alternative syntax trees resulting from the operations a and b.

3.6. MuDeL modifiers

There are twomodifiers that can be applied to an operation. The negationmodifier is used to “invert” the result of an operation.
It is syntactically represented by a ∼ placed in front of the modified operation. Every operation in MuDeL can result in either
a failure or a success. The precise meaning depends on the specific operation on which it is applied. For instance, the match
operation results in a success if it can unify its operands, and results in failure otherwise. When modified with ∼, a unification
will be considered a failure, while the inability to unify will be considered successful.

The in depth modifier is used to indicate that the modifier operation should be applied not only to the context tree, but also
to every of its subtrees. For instance, when applied to a match operation, the unification will be tried with the context tree and
with each of its subtrees. Whenever a unification is successful, the match operation will result in success and a mutant will be
generated. For the replace operation, the effects of themodifier is similar. The replacement will bemade not only in the context
tree, but also in every of its subtrees, in turn. It is important to note that each replacement will take place in the original tree, i.e.,
after each replacement, the tree is restored to the original one before the next replacement be searched.

3.7. Usage examples

In this section, we illustrate the usage of elements ofMuDeL syntax. We present only the operator body, not including the
operators name and the meta-variable declaration sections, once they can be inferred from the operations. Moreover, we give
only an informal definition of the semantics of each operation. A formal definition can be found elsewhere [27]. All the examples
describe mutant operators for the C language.

An example of a replace operation is presented in Fig. 5, that replaces a while statement (matched in Line 1) by a do–while
one (Line 2). This is the objective of the SWDW mutant operator defined by Agrawal [14].

Assuming that :p is bound to the syntax tree of the fragment of C code in Fig. 6(a), after the application the operation in
Fig. 5, the code will be replaced by that in Fig. 6(b).
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Fig. 7. An example of while statements that will not be replaced by the operation in Fig. 5.

Fig. 8. The replace operation modified by *.

Fig. 9. A C function example.

1

Fig. 10. An example of the matching operation.

1

2
3
4

Fig. 11. A usage example of the combiner ;;.

Suppose now that :p is bound to the C code in Fig. 7(a). In this case the operation in Fig. 5 will not be applicable, since the
while statement will form a sub-tree of the whole statement, and, thus, the pattern of the replace operation will not unify to it.
Another situation that should be dealt with is illustrated in the C code in Fig. 7. In this case, we have threewhile statements.

To properly deal with this situation, we can modify the replace operation with the modifier *. The meaning of a replace
operation with the modifier * is that every successful matching of b with c itself or any of its subtrees will produce a mutated
tree. Indeed, we can think of this modified operation as producing alternative states, and each of such states will have its own
execution flow and eventually producing a mutant. Therefore, a more adequate mutant for the SWDW is the one presented in
Fig. 8.

Suppose that themeta-variable :f is bound to the code in Fig. 9. Then, after the application of thematching operation in Fig. 10,
the meta-variable :s will be bound to the body of the function. Observe that the pattern will match a function with no arguments
that returns an int value.

The compoundoperation in Fig. 11will replace every variable in the control expression of awhile statement to 0. It is important
to note that, for every such a control expression, the matching will produce an alternative state and the replace operation in
Line 3 will be applied to each one, possibly generating more alternative states by itself. This example illustrates the usage of the
match operation to constrain the context in which the replacement should be applied. In this case, the operator was designed to
be applicable only towhile statement control expressions. Suppose now that one wants the replacement to be applied to control
expression of every iterate statement, i.e., every while, do–while or for statement. In other words, we want to join the set of
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Fig. 12. A usage example of the combiner ||.

Fig. 13. An example of the usage of parenthesis to factor out common modifiers.

Fig. 14. Example of consult operation.

Fig. 15. Example of operations that exchanges an identifier by every other identifier.

alternative states of three matching operations. This can be done with the alternative combiner, which is represented by || in
theMuDeL syntax. For instance, the compound operation in Fig. 12 will achieve the objective. (The parenthesis are necessary
because ;; has a higher precedence than ||.)

The parenthesis can also be used to avoid explicitly declaring the context tree in every operation, as well as the * modifier.
Therefore, the compound operation in Fig. 12 is equivalent to the compound operation in Fig. 13. There is, however, a small
difference between both w.r.t. the efficiency and the order in which the alternative states (and, hence, the eventual mutants) are
produced. While in Fig. 12 :f is traversed three times, since for each match operation starts from the root node of the :f syntax, in
Fig. 13 :f is traversed only once.

The other two basic operations (namely, assert and consult) are related to context-sensitivemutants. The consult operation
in Fig. 14 is used to ensure that only identifiers with the int attribute is mutated to 0.

To illustrate the use of the assert operation, consider a mutant operator that exchanges each identifier by each distinct
identifier in the artifact. (For sake of simplicity, we assume that this mutation can be carried out without taking context into
consideration.) Firstly, consider the operator in Fig. 15, which will exchange each identifier matched in Line 3 by the identifier
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Fig. 16. Example of usage of consult and assert operations to avoid employing the same identifier more than once.

Fig. 17. Usage of cut operation.

matched in Line 1 that are not equal to each other (ensured by the negated matching in Line 6). If the same identifier occurs in
more than one location, the match in Line 1 will produce an alternative state for each one, and the replacement will generate
several identical mutants. We canavoid this situation with the usage of consult and assert operations, as illustrated in Fig. 16.
In this way, the consult operation in Line 3 ensures that there is no tuple for the used attribute with the :id1 value. Then, if so,
the assert operation stores such a tuple in the root node (since no context pattern was furnished).

The cut operation can be used to prune the set of alternative states that the previous operations might have generated. It was
introduced in MuDeL language for sake of completeness, since the other operations are inspired in Prolog, and this language
has the cut operator (!), whose purpose is similar. An example of the usage of cut is presented in Fig. 17, which equals the example
in Fig. 13, expect for the cut operation added in the end. The effect is that after the cut operation is executed, any pending
alternative states are forgotten, i.e., at most one mutant will be generated.

In Fig. 18 we present the SDWE operator that is meant to change everywhile statement into a do–while and also change the
control expression into 0 and 1. This kind of mutant is usually necessary when branch coverage is required. Observe that, in a C
program, changing the control expression into 0 has the effect of iterating the body of thewhile statement exactly once, whereas
changing the control expression into 1 converts the do–while into an infinite loop. Fig. 19(a) presents a simple C program and
Figs. 19(b)–(e) present the mutants that will be generated for this program with the SDWE operator.

The replacing operation in Lines 5 and 6 changes every while statement into a do–while statement, in any depth. The meta-
variable :e stands for the control expression of the while. The group of operations in Lines 8–20 makes changes in this control
expression. Observe that the context pattern declaration in Line 8 affects the whole group, and, consequently, every operation
therein.

The (negated) matching in Line 9 makes sure that the context pattern (:e, in this case) is not equal to 0. If so, the context
pattern is changed to 0, by the replacement in Lines 11 and 12, and amutant is generated. Note that these two operations compose
a sequence, which is part of an alternative list. Then, the next alternative is tried, in this turn w.r.t. the expression 1. Finally, the
operation in Line 19 is tried and a mutant is generated only with the replacement of Line 5.

Analyzinghow themutants are generated in this example illustrates thewayMuDeL processes amutant operator definition.
The replacing operation (Lines 5 and 6) is marked with the in depth modifier and, therefore, the whole program syntax tree will
be scanned, looking for nodes that match the respectivepattern and changing them accordingly. The replacing operation and
the group of operations in Lines 8–20 compose a sequence, i.e., every mutant should include the effects of the replacing and the
effects (if any) of the group. This group, by its turn, is composed by a list of three alternatives: the first alternative is in Lines 9–12;
the second one is in Lines 14–17; and the last one is in Line 19. Only the effects (if any) of one of these alternatives will be included
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Fig. 18. A multi-purpose whilemutant operator.

in a particular mutant. For instance, Mutants #1 and #2 in Figs. 19(b)–(c) are generated by replacing the outermost while of the
program in Fig. 19(a) and applying the first and the third alternatives, respectively. (Observe that the second alternative does
not generate a mutant, since the operation in line 14 does not succeed.) On the other hand, Mutants #3–#5 in Figs. 19(d)–(f) are
generated by replacing the innermost while and applying each of the alternatives, respectively.

4. Applying MuDeL

The usefulness of MuDeL can be measured by its suitability in defining mutants, which is its primary goal; in allowing
the reuse of mutant operators in different languages; and in generating a mutant generator prototype module that can be
evolved and incorporated into a mutation-testing environment. Currently, we have already described mutant operators for (i)
specifications written in colored Petri nets (CPNs) and FSMs, (ii) for the functional language standard meta-language (SML), and
(iii) for traditional languages such as C, C + + and Java.

In this section, we present our experience usingMuDeL, and bring some evidence of its usefulness. However, more studies
are necessary in order to soundly validate the language. Moreover, there is a lack of feedback from other research groups, and a
thorough validation would involve the use of the language by others.

FSM, CPN and SML mutant operators: We used MuDeL to define mutants for specifications written in FSMs [36] and CPNs
[37]. In the case of FSMs, we use MuDeL to describe the nine mutant operators defined by Fabbri et al. [38]. Using the
mudelgen system (described in the next section), we were able to use the mutant operators within the Plavis/FSM environment,
which are being used in experiments in Brazilian National Space Agency, in the scope of a project supported by CNPq and CAPES-
Coffecub.2 In the case of CPNs, we observed that the language was useful to allow a rapid prototyping and experimentation with
different kinds of mutants. In the whole, 29 mutant operators were defined and used in Proteum/CPN tool [37]. It is important
to mention that CPNs annotation language is based on SML and we could reuse some common parts of the mutant operator
descriptions in both languages [39].

C and C + + mutant operators: For C language, we described the 77 mutant operators proposed by Agrawal [14], which are
implemented in Proteum/C tool. Next, we adapted these operators and described similar mutant operators for C++. We realized
that, by carefully designed the grammar and the MuDeL definition, we could reuse 65 operators, nearly 85% of them. To
illustrate how this was possible, consider again the operator in Fig. 5. Examining the definition, we can observe that the only
relation between the operator and the language of the artifact is in the patterns. Even in the patterns, only the types of the patterns
and of the meta-variables and the sequence of terminal symbols are relevant. Therefore, the same definition can be applied both
for C and C+ +, provided that the respective grammars agree in these points: (i) the name of the relevant non-terminal symbols

2 http://www.labes.icmc.usp.br/plavis/.

http://www.labes.icmc.usp.br/plavis/
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Fig. 19. (a) Original program. (b)–(e) Mutants generated by operator in Fig. 18. The mutated parts of the code are highlighted.

(that define the types available) and (ii) the sequence of terminal symbols that appear in the relevant non-terminal productions.
Observe that not thewhole sequence of terminal symbols should be the same. Rather, only the terminal symbols that are relevant
to theMuDeL definition. In the SDWD example, for the mutant definition to be applicable, it is necessary that both grammars
have a non-terminal symbol S and that there is a derivation from S to `while' `(' 〈E〉 `)' 〈S〉 and to `do' 〈S〉 `while' `(' 〈E〉 `)' `;'.

Java mutants: We have also carried out a study, in which we try to apply the mutant descriptions for C and C + + to the Java
language. Since the grammar of these languages are similar, we could observe that 31 mutant operators could be reused for Java.
The results of the application to C, C + + and Java are summarized in Fig. 20.

We have investigated how MuDeL can be used with mutant operators that are more semantic-driven. We have described
the class mutant proposed by Kim et al. [40,41]. Some of those operators are related to the semantics of inheritance, overloading
and overriding concepts, which varies from one OO language to another. Those complex operators can only be described with
complex MuDeL code. Indeed, the complexity is inherent to the operators and, to our knowledge, their definition could only
made simpler if we hide the complexity in a more complex operation of the language. The same situation occurs with any
language. There is a trade-off between the simplicity of the operations and its ability to handle complex mutants. The complexity
of these kinds of mutants comes from the underlying semantics of those languages. For instance, let us consider CM operators
defined by Kim et al. [41]. From the 20 mutant operators, we could describe easily 10 of them, since they require only syntax
driven changes. Other five could be described, provided that some semantic information is collected and is available to consult
operations. However, this semantic should be coded, anyway, and to adequately capture the semantics of OO languages is not
an easy task and is still open issue in the programming language semantics research. Unfortunately, we could not find an easy
way to tackle this problem, either. The remaining five ones might be described, depending on what exactly the authors mean.
For instance, FAR operator is defined as “Replace a field access expression with other field expressions of the same field name”.
Unfortunately, it is not clear what “a field access expression” exactly means. Other example of ambiguity is the definition of
AOC operator. In Kim et al. [41], the authors defined it as “Change a method argument order in method invocation expressions”.
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Fig. 20. Mutant definition reuse for C, C + + and Java.

It is not clear how many mutants can be generated from a method with more than two arguments. The possibilities are: (i) one
mutant for each permutation of the arguments (i.e., exponentially many mutants); (ii) one mutant for every shift, in the same
vein as Agrawal's SSOM mutation operator. In Kim et al. [40], the authors give a little bit more explanation about the operator
and provide an example, neither of which clarify the point. These ambiguities evidence the necessity of a formal definition of
mutant operator.

5. mudelgen

In order to be able to process the MuDeL descriptions, we implemented the mudelgen system. In this section we discuss
its main implementation aspects. Suppose that we are interested in describing mutant operators for a language L. The first step
is to obtain a grammar G for L. When mudelgen is input with G, it produces a program mudel.G. This program can then be run
with a mutant operator definition OD and an artifact P. After checking whether both OD and P are syntactically correct w.r.t. the
input grammar G, a mutant set M is generated.

Tomanipulate themudelgen input grammar,weusebisonandflex,whichareopen sourceprograms similar to, respectively,
yacc and lex [42]. Although these tools ease the task of manipulating grammars, they, on the other hand, restrict the set of
grammars that mudelgen can currently deal with to LALR(1) grammars [34,35,42]. The grammar input to mudelgen is provided
in two files: the .y and the .l. The .y file is the context-free grammar, written in a subset of yacc syntax [42]. The .l file is a
lexical analyzer and gives the actual form of the terminal symbols of the grammar and it is encoded in a subset of the lex syntax
[42]. The attribute values are attached to the tree nodes with special C functions put in the semantic action of the productions of
.y. For instance, the function assertFact can be used to store an attribute value in a way similar to the assert operation.

The mudelgen is divided into two parts: one part with the elements that depend on the input grammar and the other one
with elements that do not. Fig. 21 depicts how these parts interact and illustrates the overall execution schema of mudelgen. The
grammar-dependent part is actually composed by three modules, which are executable programs: treegen, opdescgen and
linker. The grammar-independent part is embodied in the Object Library. The major portion of the Object Library is
devoted to the so-called MuDeL Kernel, which is responsible for interpreting the mutant operator definition and manipulating
the syntax tree accordingly. The remaining units in the Object Library allow the communication between theMuDeL Kernel
and the external modulesMuDeL Animator and DS Oracle, described later.

The units that depend on the grammar are built either by treegen or by opdescgen. Module treegen analyzes G and
generates the units: (i) STP (syntax tree processor), which is responsible to syntactically analyze a source product P into a syntax
tree and (ii) Unparse, which is responsible to convert the mutated syntax trees into the actual mutants. Module opdescgen
analyzes G and generates the unit ODP (operator description processor), which analyzes a mutant operator description OD w.r.t.
G and generates an abstract representation of how to manipulate the syntax tree in order to produce the mutants. Finally, the
linkermodule will link all these grammar-depending units and the appropriate portion of the Object Library and generate
the program mudel.G.

The program mudel.G is input with a source product P and a mutant operator definition OD. These input data are processed
by STP and ODP, respectively, and handled by MuDeL Kernel. During its execution, MuDeL Kernel will generate one or more
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mutated syntax trees,which are processedbyUnparse in order to generate the actualmutants.Unparse canoutput the generated
mutants in several formats. Currently, themutants can be (i) sent to standard output; (ii) restored in SQL databases (e.g., MySQL);
or (iii) written to ordinary files (each mutant in a separate file). Optionally, the DS Oracle can be used to check whether the
mutants were correctly generated (see Section 5.1). The execution of the program mudel.G can be visually inspected with the
MuDeL Animator (see Section 5.2). The overall execution schema of mudel.G is depicted in Fig. 22.

5.1. Denotational semantics-based oracle

The number of mutants generated is often very large and manually checking them is very costly and error-prone. Therefore,
the validation of mudelgen is a hard task, mainly due to the amount of output which is produced. To cope with this problem,
we adopted an approach that can be summarized in two steps. Firstly, we employed denotational semantics [25] to formally
define the semantics ofMuDeL language [27]. Secondly, supported by the fact that denotational semantics is primarily based
on lambda calculus, we used the language SML [43], which is also based on lambda calculus, to code and run the denotational
semantics of MuDeL. We implemented an external module DS Oracle that can be run in parallel with mudel.G through the
Oracle Interface in a validation mode. When invoked, the DS Oracle receives the information about a mutant operator OD
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Fig. 23.MuDeL Animator main window.

and derives a denotational function � (in themathematical sense) that formally defines the semantics of OD. Then, theDS Oracle
reads the information about the source product P and the set of generated mutants M. The mutants in M are compared with the
mutants defined by �. Any identified difference is reported in the discrepancy report D.

It is important to remark that the validation mode has no usefulness for users interested in mudelgen's functionalities, since
it brings no apparent benefit. However, it is very useful for validation purpose, since it improves the confidence that the mutants
are generated in the right way. Nonetheless, from a theoretical viewpoint, there is a possibility that a fault in the implementation
be not discovered, due to the fact that the SML implementation may also possess a fault that makes it produces the same
incorrect outputs. However, the probability that this occurs in practice is very small. Both languages (i.e., C + + and SML) are
very different from one another. Moreover, the algorithms and overall architectures of both implementations are very distinct.
While we employed an imperative stack-based approach in C + +, we extensively used continuation and mappings [25] in SML.
Consequently, it is not trivial to induce the same kind of misbehavior in both implementations. In other words, although none of
them is fault free, the kind of faults they are likely to include is very distinct. With this consideration, we conclude that the use
of denotational semantics and SML was a powerful validation mechanism for mudelgen.

5.2. MuDeL animator

We have also implemented a prototyping graphical interface—calledMuDeL Animator—for easing the visualization of the
execution of a mutant operator. MuDeL Animator was implemented in Perl/Tk and currently has some limited features that
allows inspecting the log of execution, without, however, being able to interfere in the process. SinceMuDeL Animator enables
us to observe the execution of a mutant operator definition, it is very useful not only for obtaining a better understanding of the
MuDeL's mechanisms, but also for (passively) debugging a mutant operator.

Fig. 23 presents the main window ofMuDeL Animator, where the example of Fig. 18 was loaded and is being executed. At
the top of the window are the buttons that control the execution of the animator, such as Step, Exit, etc. The remaining of the
window is divided up into four areas:

MuDeL description: In the left bottom area, MuDeL Animator presents the mutant operator definition. A rectangle in-
dicates which line is currently executing. Every meta-variable is highlighted with a specific color. The same color is used in
whichever occurrence of the same meta-variable throughout all the other areas.

Mutant tree: In the left top area, the animator shows the syntax tree of the product, reflecting any change so far accomplished
by the execution. An arrow indicates which node is currently the context tree. Meta-variable bindings are presented by including
the names of the meta-variable above the respective tree nodes.

Current product: In the right bottom area, the current state of the product, obtained by traversing the current state of the
mutant tree, is presented. The parts in the mutant that correspond to the nodes bound to meta-variables are highlighted with
the respective color.

Pattern tree: In the right top area,MuDeL Animator shows the tree of the pattern currently active (i.e., in the current line)
in theMuDeL description area.
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SinceMuDeL Animator enables us to observe the execution of a mutant operator description, it is very useful not only for
obtaining a better understanding of theMuDeL's mechanisms, but also for (passively) debugging a mutant operator.

5.3. Operational aspects

Wehave designed mudelgen to generate amodule for each particular language. Thesemodulesmight be used as a standalone
tool, or as an component within a larger, more complete upper-level environment. Therefore, we delegate some common tasks
of managing mutants to this upper-level environment, such as (i) preparing the source code; (ii) selecting parts of the source
code to which the operators should be applied; (iii) selecting which of the generated mutants should be used or discarded, and
so on. We decided to keep these tasks to the upper-level as a way of increasing flexibility. In this way, the module could be used
in different context and with different purpose, such as constraint mutation [44], essential mutation [11] and so on. However,
this upper-level environment is very important to make the application of mutant testing feasible. For instance, the module
mudelgen will apply the mutant operator to the whole source code that is provided as input. For large source codes, this could
be impractical or even impossible.

Besides being generated, the mutants must be executed in some way, in order to collect the results and decide whether a
mutant was killed by a test set or would stay alive. In general, the execution of mutants can be very costly. In the particular case
of mutants of programs, it may be necessary to compile and execute every mutant. To tackle this problem, some researchers
have proposed alternative schemas of execution. For instance, Untch et al. [45] use mutant schemata. Several mutants are put in
a single generic source, which is parameterized to behave like any of the individual mutants. In this way, only one compilation
for each schemata is necessary. A similar approach is employed by Delamaro et al. [18] in Proteum/IM to avoid compiling every
mutant in a separate file.

ConsideringMuDeL as a language to define mutants, any of these approaches can be used, although the most natural one is
the individual compilation schema. For instance, a specializedMuDeL compiler can be constructed, which will generate one or
more mutant schematas instead of individual mutants. However, it is necessary to take into account the semantics of the target
language, since the way several mutants can vary from one language to another. This is an interesting point for future research.
Nonetheless, it is important to highlight that a language likeMuDeL can help in this context, providing a uniform notation and
precise semantics for describing the construction of each mutant.

6. Concluding remarks

The efficacy of mutation testing is heavily related to the quality of the mutants employed. Mutant operators, therefore, play
a fundamental role in this scenario, because they are used to generate the mutants. Due to their importance, mutant operators
should be precisely defined. Moreover, they should be experimented with and improved. However, implementing tools to
support experimentation and validation of the mutant operators before delivering a mutant environment is very costly and
time-consuming.

In this paper we presented the MuDeL language as a device for describing mutant operators and generating a mutant
generator prototypingmodule. The language is based on the transformational paradigm and also uses some concepts from logical
programming. Being defined in MuDeL, an operator can be “compiled” and the respective mutants can be generated using
the mudelgen system.MuDeL and mudelgen together form a powerful mechanism to develop mutant operators. The mutant
operators canbevalidated either formally (with the facilities ofDS Oracle) ormanually (with the facilities ofMuDeL Animator).

The design decisions we have taken lead us one step further towards the achievement of our goals. There are some points
that need to be further investigated. For instance, MuDeL was mainly designed to deal with context-free mutations. With
this decision, we keep the language quite simple, yet considerably expressive. However, there are some important kinds of
mutants that are inherently context-sensitive. For example, some programmutant operators might need knowledge that are not
readily available, such as the set of variables defined prior to a specific point in the program, or whether a method overrides the
method of a parent class. Although, these situations can be dealt with assert and consult operations, we realize that these
mutant operators are not easy to write nor are the definition easy to follow. Indeed, the problem of dealing with context aware
transformation is a hard problem for any transformational language [33]. We are still investigating how these situations can be
more suitably handled. For instance, we observe some idioms in the mutant operators that might be candidates to be included in
the language as primary operations.

The experiments we have carried out withMuDeL involved languages for which there were supporting tools, namely Petri
nets and C programs. Although fully useful in demonstrating its potential usage, these experiments are not a complete validation.
Right now, we are working on a project where Java mutant operators are being described, what will further contribute towards
the validation of the ideas presented herein.

There are tasks that are hard, cumbersomeor even impossible to be carried out onlywith the constructionMuDeL embodies.
As example, we can cite arithmetics and string manipulation. To tackle this problem, we are currently developing an API
(application programming interface) to allow the implementation and inclusion of built-in rules written in a conventional
programming language, namely, in C+ +. We, then, keep the kernel ofMuDeL tiny, whereas built-in rules can be provided for
any further need we have to take care of.
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Some forthcoming steps in this research include:

• To develop an integrated development environment (IDE), providing features to edit the context-free grammar, the mutant
operator and the original product in amanner as uniform as possible, and also providing features to compile, execute and debug
the mutant operator definition mudelgen is currently operated by means of command-line invocations and has some limited
graphical interaction (withMuDeL Animator). To ease the usage and experimentation, an IDE would be more appropriate.

• To further investigate the context-sensitiveness of some kinds of mutants and devise constructions to cope with them.
• To integrate theMuDeL and the mudelgen in a completemutation tool. Mutation testing demands also other activities such
as test case handling, mutation execution, result analysis, and so on.We are now specifying and designing a completemutation
tool which follows the main ideas ofMuDeL, i.e., a tool with multi-language support.

• To investigate the relationship between syntax and semantic mutation.
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