
Disentangling Denotational Semantics Definitions

Fabio Tirelo
(Instituto de Informática, Pontif́ıcia Universidade Católica de Minas Gerais

Brazil
ftirelo@pucminas.br)

Roberto S. Bigonha
(Departamento de Ciência da Computação, Universidade Federal de Minas

Gerais, Brazil
bigonha@dcc.ufmg.br)

João Saraiva
(Departamento de Informática, Universidade do Minho, Portugal

jas@di.uminho.pt)

Abstract: Denotational semantics is a powerful technique to formally define program-
ming languages. However, language constructs are not always orthogonal, so many se-
mantic equations in a definition may have to be aware of unrelated constructs seman-
tics. Current approaches for modularity in this formalism do not address this problem,
providing, for this reason, tangled semantic definitions. This paper proposes an incre-
mental approach for denotational semantic specifications, in which each step can either
add new features or adapt existing equations, by means of a formal language based on
function transformation and aspect weaving.

Key Words: semantics of programming languages, denotational semantics, modular-
ity, aspect-oriented definitions

Category: D.3.1, D.3.3, F.3.2, F.3.3

1 Introduction

Formal semantics of large scale programming languages is inherently complex
due to the large number of crosscutting details that must be coped with. It
is then desirable that such specifications be modular and extensible, and be
written in an incremental way, so that constructs may be successively added
to the definition of a core language. Moreover, this incremental process must
not force the redefinition of previously written modules, and additionally must
require that the language designer use only simple features and techniques.

However, large scale programming languages usually are composed by con-
structs which are not always orthogonal, and therefore providing separate def-
initions for them is not trivial. An example of this problem is the definition of
method calls and exception handling in Java: not only must the definition of
the return statement specify its expected behavior, but also it has to be aware

Journal of Universal Computer Science, vol. 14, no. 21 (2008), 3592-3607
submitted: 16/4/08, accepted: 5/6/08, appeared: 1/12/08 © J.UCS

of possible finally blocks which must be executed before restoring the execution
control to the caller function, either by normal return or via exception handling
mechanism. Furthermore, because the semantics of a program is produced by
the semantic equations in a top-down way, each construct may be responsible
for preparing context for each possible constituent.

As a consequence, not only are the semantic equations responsible for spec-
ifying the meaning of the constructs, but also they must define how such con-
structs interact with each other. Moreover, for defining an interaction between
two constructs, at least one of them must be aware of the existence of the other.
For instance, the problem of return statements inside try blocks may be solved
by redefining the continuation associated with the sequencer so that the finally
block is executed before returning. Since in traditional approaches of denota-
tional semantic specifications (see Section 2) there is a one-to-one mapping of
language constructs to semantic equations, such interactions definitely induce
tangled elements in at least one semantic equation1.

This property directly impacts the modularity of the language’s denotational
semantics definition, because the description of one construct must contain ele-
ments of unrelated ones, which violates the principle of module high cohesion.
In addition, the incremental definition of a language usually requires that pre-
viously defined modules be rewritten whenever a new construct is defined, so
that the whole writing and rewriting process becomes tedious and error-prone.
From the reader point of view, crucial information about the language may be
obscured by several details in the semantic equations, which makes it hard to
fully understand some constructs.

The main contribution of this paper is an aspect-oriented-based technique
for improving the process of incrementally defining programming language de-
notational semantics. In this approach, constructs are defined in a two phases:
first, the construct is separately defined, and the semantic equations may not
be aware of other constructs; then, the influence of other constructs on it is
specified. Understanding such specifications is also a two-phases process. First
the reader can understand the key concepts on the language constructs; in this
first reading the relation among those constructs is abstract. After having ac-
quired expertise on the individual constructs, the reader can focus on how such
constructs interact, to get the whole picture of the definition.

2 Current Approaches

One of the first steps to the modularity of denotational semantics has been
made by Mosses in the Action Semantics [Mosses 1977]. Further attempts to
1 It is a direct consequence of the pigeon-hole principle. However, this is not true for

systems based on structural operational semantics, because more than one clause
may be used to separately define behavior of a construct.

3593Tirelo F., Bigonha R.S., Saraiva J.: Disentangling Denotational ...

improve the modularity of denotational semantics have been made since then,
with highlight to Monadic Semantics [Liang et al. 1995] and Monadic Action
Semantics [Wansbrough and Hamer 1997]. Recently problems related to sepa-
ration of concerns in semantic specifications were addressed by De Moor et al.
[Moor et al. 2000] and Mosses [Mosses 2004, Mosses 2005]. This work improves
the results of those contributions by presenting a modular mechanism for defining
and transmitting context information among programming languages constructs.

The existence of a one-to-one mapping between language constructs and se-
mantic equations, which leads to the lack of modularity as discussed in Section 1,
is found in Action Semantics, Monadic Semantics, and Monadic Action Seman-
tics. In fact, both action notation and monads provide elegant mechanisms to
abstract the structure of context information for antecedents and destinations.
However, structural context information is usually propagated by means of stores
and environments, so that such propagation appears tangled in the semantic
equations.

De Moor et al. [Moor et al. 2000] proposes an aspect-oriented based tech-
nique to improve the modularity of attribute grammar, which can also be applied
to semantic definitions. In that model, attributes may be defined in separate sec-
tions and “can be woven together to form a pure attribute grammar”. By letting
attributes be defined with aspect support, it is possible, for instance, to create
a definition for repetition which is vague with respect to sequencers. However,
interactions among language constructs may need information not available for
attribute definition, specially if they are decoupled from the syntactic structure.
For example, in the following piece of Java code, the throw in function f to the
catch in function g cannot be expressed by neither inherit, synthesize, nor chain
clauses, because there is no syntactic relation between the constructs.

void f() { throw new E(); }
void g() { try { f(); } catch (E e) { ... } finally { ... } }

Mosses [Mosses 2004] provides a model inspired on monadic semantics for
defining modular structural operational semantics (MSOS) of programming lan-
guages. As new constructs are added to a specification, the context may evolve
without requiring that previously written equations be redefined. Context in-
formation is transmitted as labels of transition rules, and modularity and ex-
tensibility are derived by letting them abstract from the structure of labels.
The result is a set of abstract transition rules, without explicit context informa-
tion to get in the way. Moreover, as SOS programmers to define separately the
interaction among constructs, it is also possible in MSOS. However, some inter-
actions may need to be defined by listing all possible cases, as in the definition
of Java provided by [Cenciarelli et al. 1999]; even without defining repetition
and sequencers, there are 33 transition rules to define function call and return,

3594 Tirelo F., Bigonha R.S., Saraiva J.: Disentangling Denotational ...

exception handling, and their interactions2.
Reusability can also be improved by means of the constructive approach

proposed by Mosses [Mosses 2005]. In this approach, for a given language, a
representative set of abstract constructs is formally defined, and concrete con-
structs may be translated into the defined abstractions, so that their semantics
are straightforwardly obtained. Furthermore, sequencers can be defined as ex-
ceptions to be handled by an exception handling mechanism associated with the
while statement. However, by doing it, elements for sequencers handling remain
interleaved in the definition of the while statement, and therefore bringing into
the initial definition of the concrete statement concerns about the effects of such
exceptions.

3 Incremental Definitions

Programming languages semantic definitions are large and complex systems
which are better defined in an incremental way, so that new constructs and
behaviors are defined upon existing ones. For instance, when teaching a pro-
gramming language, it is worthwhile to abstract away advanced concepts to
explain basic constructs first; later the introduction of such concepts may re-
define previously explained elements, while preserving their basic nature. Such
vague explanation is desirable because it usually requires less effort to learn the
language concepts.

Let a semantic specification be the quaduple S = (G,D, τ, ρ), where G is
the language abstract grammar, D is the set of semantic domains, τ is a type
environment which maps semantic function names into their domains, and ρ

is the environment which maps semantic function names into their definitions,
i.e, the semantic equations. To achieve abstractness, environment ρ maps each
function name into a set of defining clauses, each one represented by its list of
patterns and its expression.

Function applications occurring inside function bodies are indirectly per-
formed in an environment ρ, which dynamically binds function identifiers to their
definitions. Thus, if specification S is composed by functions f1, f2, · · · , fn, where
each fi is defined by at least one clause with the form fi pi1 · · · pik = ei, then the
corresponding clause in the environment is3 ([ρ, pi1, · · · , pik], ei[(ρ fj) ρ/fj ,∀j]).
If function f is defined by means of cases based on pattern matching, then the
environment argument is included in each case. In addition, the list of patterns
2 In fact, those rules only define the behavior of a return statement inside a try block,

without specifying its behavior inside a catch block; then, by those rules, if a return
is executed inside a catch block the corresponding finally block is not executed.

3 The elements of this clause represents nodes of a specification’s abstract syntax
tree. Notation e[e′/x] represents expression e in which all free occurrences of x are
replaced by e′. In expression ρ f , consider f be the function identifier and not the
actual function itself.

3595Tirelo F., Bigonha R.S., Saraiva J.: Disentangling Denotational ...

is considered as if arguments were not ruled out by η-reductions, and don’t care
patterns (like Haskell’s) were replaced by fresh identifiers.

For instance, if a specification is composed solely by function E : Exp →
Env → Val, such that E [[Id]] r = r Id, and E [[E1 + E2]] r = E [[E1]] r + E [[E2]] r,
then type environment τ is defined as τ = {E �→ (Exp → Env → Val)}, and
definition environment ρ is defined as ρ = {E �→ {clause1, clause2}}, where
clause1 = ([ρ, [[Id]], r], r Id) and clause2 = ([ρ, [[E1 + E2]], r], ((ρ E) ρ) [[E1]] r +
((ρ E) ρ) [[E2]] r).

An incremental definition of the semantics of a language is defined as a
sequence S0, S1, · · · , Sn, where each Si is a semantic specification of a language’s
subset, and Si+1 includes further behavior to Si. Each new specification may
add new elements, but sometimes it may be necessary to adapt previous existing
equations. Given a specification Si, a new specification Si+1 = t(Si) + ΔSi is
obtained from Si by applying to it a transformation function t and including the
elements defined in ΔSi.

A transformation is a function t that maps semantic specifications into se-
mantic specifications. This function is meant to adapt the behavior of semantic
equations. The effect of such function is to define new environments τ ′, ρ′ map-
ping each function to its new definition, so that t (G,D, τ, ρ) = (G,D, τ ′, ρ′).
An inclusion into a specification S, denoted by ΔS, represents new elements to
be added to the specification, usually elements concerning with new language
constructs.

The working example used throughout this paper consists of a specification
Si of a language L composed by expressions, declarations, and commands, whose
abstract syntax, and semantic functions and equations for the relevant constructs
to the discussion are presented in Figure 1. In these equations4, the definition of
the while statement is vague with respect to the existence of sequencers. If spec-
ification Si+1 defines sequencer break, it is necessary to adapt the while equation
to prepare the context in which the sequencer is executed. The corresponding
inclusions consist on defining a new grammar rule for the break sequencer and a
new semantic equation to define it.

This paper concentrates on function transformations, which is its main con-
tribution. Other kinds of inclusions can be easily achieved by using ordinary
modularity features of programming languages and, therefore, are not further
presented. Although the running example is based on traditional continuation
semantics, the proposed technique is suitable for using with other modularity
improving techniques, such as monads, as shown in the case study of Section 8.

A definition increment may affect existing semantic functions and equations
by requiring: (i) function signatures be redefined to include new arguments, to
change the type of some function argument, or to change return types; (ii) func-

4 fix represents the fix point operator.

3596 Tirelo F., Bigonha R.S., Saraiva J.: Disentangling Denotational ...

Abstract syntax:

P ∈ Prog → D; C
C ∈ Com → while E C | C1; C2 | · · ·
E ∈ Exp → · · ·
D ∈ Dec → · · ·

Semantic Functions:

P : Prog → Ans
C : Com → Env → Cc → Cc
E : Exp → Env → (Val → Cc) → Cc
D : Dec → Env → (Env → Cc) → Cc

Semantic Equations:

P[[D; C]] = D[[D]] r0 (λr.C[[C]] r (λs.stop)) s0

C[[C1; C2]] r c = C[[C1]] r; C[[C2]] r c
C[[while E C]] r = fix λfc.E [[E]] r; λv.if v then C[[C]] r (f c) else c
Other equations defining C, E , and D

Figure 1: Working Example of the Paper – Only Relevant Constructs for the Discussion
Are Presented.

tion arguments or its return values be decorated5 in order to handle unpredicted
situations or to conform the equations to signature changes; (iii) some equa-
tions be completely redefined, when no automatic transformation is implied. A
function is promoted with respect to a transformation t if it is subject to any
modification defined in t. Function transformations may be defined by means of
the following construction, whose constituents are defined in Sections 4-7:

transformation transformation-name
signature f1 : T1 to T ′

1, f2 : T2 to T ′
2, · · · , fm : Tm to T ′

m

default l1 = c1, l2 = c2, · · · , ln = cn

application l1 ⇒ e′1, l2 ⇒ e′2, · · · , ln ⇒ e′n
use l1 ⇒ e1, l2 ⇒ e2, · · · , ln ⇒ en

replace f1 p11 · · · p1k1 by e1, · · · , fn pn1 · · · pnkn
by en

redefine f1 p11 · · · p1k1 = e1, · · · , fn pn1 · · · pnkn
= en

Given a specification S and a transformation function t, S′ = t(S), is de-
fined in two steps: the first step collects the transformations to be performed
on each individual function and produces a sequence 〈t1, t2, · · · , tm〉, where each
ti can be an argument inclusion, a type redefinition, a decoration, or an equa-
tion redefinition; the second step creates the new environments by applying the
transformations on each function. In such sequence, argument inclusions and
type redefinitions are performed before decorations, which, on their turn, take
place before equation redefinitions.
5 Decoration has the meaning established in the GoF Design Patterns

[Gamma et al. 1995]. In fact, it can be understood as the implementation of this pat-
tern using around advices from Aspect-Oriented Programming [Kiczales et al. 1997].

3597Tirelo F., Bigonha R.S., Saraiva J.: Disentangling Denotational ...

4 Argument Inclusion

In the signature changing clauses of Section 3, each function fi having type Ti

must be transformed into a function of type T ′
i . Labels may be assigned to

constituents of each Ti, T
′
i in order to denote inclusion of new arguments, or

transformation of arguments into new ones. A labelled type has the form (l : t),
where l is a label, and t is a type expression.

A signature changing clause is valid when the following rules apply: (single
occurrence) each label occurs at most once in each Ti, and at most once in each
T ′

i ; (left consistency) if (l : t1) is a component of Ti, and (l : t2) is a component
of Tj , then t1 = t2; (right consistency) if (l : t′1) is a component of T ′

i , and
(l : t′2) is a component of T ′

j , then t′1 = t′2; (left-right correspondence) if (l : t) is
a component of Ti, then (l : t′) is a component of T ′

i for some type t′.
All new arguments included by the signature clauses are passed through

recursive applications of the functions. In the absence of such value, a default
value to be inserted in the original applications is defined by means of the default
clause. In the default clauses, each li is a label for a type ti in the right-hand side
of a signature changing clause, and ci is an expression of type ti. For example, one
possible solution to the problem of including the break sequencer is to include a
new argument into semantic function C representing the continuation for a break
statement, as defined by transformation include break a.

transformation include break a
signature C : Com → Env → Cc → Cc

to Com → Env → (b : Cc) → Cc → Cc
default b = λs.error

To every application of function C a new third argument λs.error will be
automatically inserted except when it is a recursive call, in which case the cor-
responding formal parameter is simply propagated. The application of transfor-
mation include break a produces the following modified versions of the semantic
equations of Figure 16:

C : Com → Env → Cc → Cc → Cc
P[[D;C]] = D[[D]] r0 (λr.C[[C]] r (λs.error) (λs.stop)) s0

C[[C1;C2]] r b c = C[[C1]] r b; C[[C2]] r b c

C[[while E C]] r b c = (fix λfc′.E [[E]] r; λv.if v then C[[C]] r b (f c′) else c′) c

Sequencer break might then be defined by: C [[break]] r b c = b.

6 Equations not affected by this transformation are not reproduced here. It is impor-
tant to highlight that this version is still incomplete for the inclusion of the break
sequencer requires the application of decorators.

3598 Tirelo F., Bigonha R.S., Saraiva J.: Disentangling Denotational ...

4.1 Formal Aspects of Argument Inclusion

Transformations for argument inclusions are collected, and the following struc-
tures are defined: α = (label, type, fmarks, def-value) is composed by the label of
the new argument, its type, the list of all functions affected by the inclusion, and
the default value of the argument; fmarks = function-name → (arg, type∗, type)
maps function names into a pair consisting on a list of argument types and
the result type of the function. The new argument is included after the list
of argument types. When multiple argument inclusions are performed on a
function, they are sequentially handled so that each inclusion considers the ef-
fect of the previous ones. For instance, the inclusion defined by the transfor-
mation include break a is represented by αb = (b,Cc, fmarks, λs.error), where
fmarks = {C �→ (arg, [Com,Env],Cc → Cc)}.

Given an inclusion α = (x, t, fmarks, x0) and specification environments τ

and ρ, new environments τ ′ and ρ′ are defined as7:

τ ′ = τ [t1 → · · · → tk → t → t′/fi,∀(fi �→ (arg, [t1, · · · , tk], t′)) ∈ fmarks]
ρ′ = {(fi �→ map (include α) clauses) | clauses = ρ fi, fi bound in fmarks}⋃ {

(fi �→ map (include′ α) clauses) | clauses = ρ fi, fi unbound in fmarks
}

Function include performs the inclusion of the argument in the functions be-
ing promoted and is defined as include (x, , fmarks,) (ρ : pats, exp) = (ρ :
pats′, exp[ρ′′/ρ]), where pats′ corresponds to the inclusion of identifier pattern x

in the expected position, and ρ′′ is the environment in which argument x is prop-
agated to any function bound in fmarks. Function include′ adjusts the bodies
of functions not being promoted and is defined as include′ (, , fmarks, x0) (ρ :
pats, exp) = (ρ : pats, exp[ρ′′/ρ]), where ρ′′ is the environment in which the de-
fault value x0 is used in applications of any function bound in fmarks.

5 Argument and Result Type Redefinition

Changes on the types of arguments or function result are denoted by labelling
the corresponding changes in a signature changing clause.

If type t is labelled with l in the left-hand side of a signature changing clause,
and the same label is used for type t′ in the right-hand side of the same clause,
then it is necessary to define a function of type t → t′ to transform arguments in
the applications of function f , and a function of type t′ → t to transform the value
of the corresponding argument of f wherever it is used. These transformation
functions are defined by means of application and use clauses, respectively. In the
application and use clauses of Section 3, each li is a label for the transformation
7 Function map f l applies function f to each element in list l, producing the list of

results.

3599Tirelo F., Bigonha R.S., Saraiva J.: Disentangling Denotational ...

from type ti to t′i, ei is an expression of type ti, and e′i is an expression of type
t′i; the corresponding transformation functions are λli.e

′
i and λli.ei.

For example, another possible solution for the problem of including the break
sequencer is to change the environment argument of semantic function C turning
it into a pair: the first element represents the current environment, and the
second element represents the continuation for break sequencers.

transformation include break b
signature C : Com → (r : Env) → Cc → Cc

to Com → (r : (Env,Cc)) → Cc → Cc
application r ⇒ (r, λs.error)
use r ⇒ (λ(r′,).r′) r

The application of transformation include break b produces the following modi-
fied versions of the semantic equations of Figure 18:

C : Com → (Env,Cc) → Cc → Cc
P[[D;C]] = D[[D]] r0 (λr.C[[C]] (r, λs.error)) s0

C[[while E C]] r = fix λfc.E [[E]] ((λ(r′,).r′)r);
λv.if v then C[[C]] r (f c) else c.

Sequencer break might then be defined by: C [[break]] r (c, b) = b.

5.1 Formal Aspects of Type Redefinition

Transformations to change types are collected, and the following structures
are defined: β = (label, type1, type2, fmarks, app, use) is composed by the ar-
gument label, its original and new types, the list of all functions affected
by the inclusion, and the application and use functions; fmarks may have
the same structure as defined for argument inclusion, but can also repre-
sent a mapping from function names to (return, type∗), which represents the
types of the function arguments. As it was the case with multiple inclusions,
when multiple signature changes are performed on a function, they are se-
quentially handled so that each change consider the effects of the previous
ones. For instance, the inclusion defined by transformation include break b is
represented by βr = (r,Env, (Env,Cc), fmarks, λr.(r, λs.error), λr.(λ(r′,).r) r),
where fmarks = {C �→ (arg, [Com],Cc → Cc)}.

Given a change β = (x, t, t′, fmarks, g, h) and specification environments τ

and ρ, new environments τ ′ and ρ′ are defined as:

τ ′ = τ [t1 → · · · → tk → t′ → t′′/fi,∀(fi �→ (arg, [t1, · · · , tk], t′′)) ∈ fmarks]
[t1 → · · · → tk → t′/fi,∀(fi �→ (return, [t1, · · · , tk])) ∈ fmarks]

ρ′ = {(fi �→ map (change β) clauses) | clauses = ρ fi} ,

8 It is important to highlight that this version is still incomplete for the inclusion of
the break sequencer requires the application of decorators.

3600 Tirelo F., Bigonha R.S., Saraiva J.: Disentangling Denotational ...

Function change applies transformation β to each defining clause of a function,
changing the environment of function applications to selectively interleave ap-
plication or use functions in the definition, and is defined as:

change β (ρ : pats, exp) = (ρ : pats, exp[ρ′′/ρ]),

where ρ′′ maps each function fj to a case depending on its relation with change
β.

ρ′′ = {(fj �→ map (apply β) cs) | cs = ρ fj , (arg, t∗, t′′) = fmarks fj}⋃ {
(fj �→ map (apply′ β) cs) | cs = ρ fj , (return, t∗) = fmarks fj

}
⋃ {(fj �→ map (use β τ ′) cs) | cs = ρ fj , fj unbound in fmarks} .

Function apply checks for argument conversions in promoted functions applying
function g of β when necessary, and it is as follows:

apply (x, t, t′, fmarks, g, h) (pats, exp) = (pats, λρ p1 · · · pmx.exp ρ p1 · · · pm x′),

where (p1, · · · , pm) is a list of fresh identifiers corresponding to the list
(t1, · · · , tm) bound to f in fmarks, and x′ = if typeof x = t then g x else x.
Function apply′ checks for return conversions in promoted functions applying
function g of β when necessary, and is defined as:

apply′ (x, t, t′, fmarks, g, h) (pats, exp) = (pats, g′ exp),

where g′ = λx.if typeof x = t then g x else x. Function use is used in non-
promoted functions, and checks the type of all their arguments of type t, applying
function h when necessary. It looks as follows:

use (x, t, t′, fmarks, g, h) τ ′ ((ρ, p1, · · · , pn), exp) =
((ρ, p1, · · · , pn), exp[p′1/p1, · · · , p′n/pn]),

where each p′i = if ti = t then h′ pi else pi, (t1, · · · , tn) is the list of argument
types bound to f in fmarks, and h′ = λx.if typeof x = t′ then h x else x.

6 Function Decoration

Some language extensions may be simply implemented by changing the argu-
ments passed to semantic functions. For instance, the definition of sequencer
break may be included in the specification by adapting the environment in which
the body of the while statement is executed. Decoration clauses define changes
for arguments and result of a given semantic equation. In the decoration clauses
of Section 3, each fi is a function of type ti1 → ti2 → · · · → tiki

→ ti, pij is a
pattern for the j-th argument of fi, and ei is an expression of type ti. The effect

3601Tirelo F., Bigonha R.S., Saraiva J.: Disentangling Denotational ...

of this transformation is to replace all applications of function fi matching the
corresponding patterns by expression ei.

For example, transformation include break a of Section 4 may be completed
by the following decoration clause:

replace C [[while E C]] r b c by C [[while E C]] r c c

This decoration clause only affects the equation defining the while statement
shown in Section 4, and its modified version is:

C[[while E C]] r b c = (fix λfc′.E [[E]] r; λv.if v then C[[C]] r c (f c′) else c′) c.

6.1 Formal Aspects of Function Decoration

Transformations for function decoration and equation redefinitions are collected,
and the following structure is defined: γ = (function-name, patterns, expression),
which comprises the name of the function being decorated or redefined, the
applicable patterns for the function, and the corresponding new expression.
As it was the case with multiple inclusions, when multiple decorations and
redefinitions are performed on a function, they are sequentially handled so
that each change consider the effect of the previous ones. For instance, the
decoration clause of transformation include break a is represented by γC =
(C, [[[while E C]], r, b, c], C [[while E C]] r c c).

Given a decoration clause γ = (fi, pats, exp) and a specification environment
ρ, a new environment ρ′ is defined as ρ′ = ρ[(map (decorate γ) clauses)/fi],
where clauses = ρ fi. Function decorate takes as argument the deco-
ration clause γ and the function clauses, and defines a decorated ver-
sion of the function, considering all function applications in exp be re-
lated to the old version of the function. This function is defined as:
decorate (f, (p1, · · · , pm), exp) ((p′1, · · · , p′n), exp′) = clause′, where if (p1, · · · , pm)
is a generalization9 of (p′1, · · · , p′m), then

clause′ = ([p1, · · · , pm, p′m+1, · · · , p′n], exp′′ p′m+1 · · · p′n),
exp′′ = exp[exp′/f][p′1/p1, · · · , p′m/pm],

or clause′ = ((p′1, · · · , p′n), exp′), otherwise.
The effect of function decorate is to replace each occurrence of f in the envi-

ronment by its new version, in which whenever the arguments of the application
match p1, · · · , pm, the decorated expression replaces the original function appli-
cation. If the patterns do not match, the original definition of f is used in the
application. It is important to highlight that all free occurrences of f in exp are
replaced by an application of exp′, and for this reason any application of function
f refers to the original definition of f .
9 Pattern p is a generalization of pattern p′ if all expressions matching p′ also matches

p.

3602 Tirelo F., Bigonha R.S., Saraiva J.: Disentangling Denotational ...

7 Equation Redefinition

In some situations, it may be more appropriate to rewrite the definition of some
constructs by means of a redefinition clause than to adapt the existing equations.
In the redefinition clauses, each fi is a function of type ti1 → ti2 → · · · → tiki

→
ti, pij is a pattern for the j-th argument of fi, and ei is an expression of type ti.
For instance, the while statement could be redefined as:

transformation include break d
redefine C [[while E C]] r =

fix λfc.E [[E]] r; λv.if v then C[[C]] r[c/break] (f c) else c

7.1 Formal Aspects of Equation Redefinition

Transforming redefinition clauses is similar to transforming decoration clauses.
Given a redefinition clause γ = (fi, pats, exp) and a specification environment
ρ, a new environment ρ′ is defined as ρ′ = ρ[map (redefine γ) clauses/fi], where
clauses = ρ fi. Function redefine takes as argument the redefinition clause γ

and the function clauses, and replaces the matching clauses. This function is
defined as10 redefine (f, (p1, · · · , pm), exp) ((p′1, · · · , p′n), exp′) = clause′, where if
(p1, · · · , pm) is a generalization of (p′1, · · · , p′m) then

clause′ = ([p1, · · · , pm, p′m+1, · · · , p′n], exp′′ p′m+1 · · · p′n),
exp′′ = exp[p′1/p1, · · · , p′m/pm],

or clause′ = ((p′1, · · · , p′n), exp′), otherwise.
The effect of function redefine is to replace each occurrence of f in the envi-

ronment by its new version, in which whenever the arguments of the application
match p1, · · · , pm, the new expression replaces the original function application.
If the patterns do not match, the original definition of f is used in the applica-
tion. It is important to highlight that all free occurrences of f in exp are looked
up to in the current environment, and for this reason any application of function
f refers to the new definition of f .

8 Case Study: Definition of Procedures and Advices

Aspect-oriented concepts of advices and dynamic join points
[Kiczales et al. 1997] are formally defined by Wand, Kiczales, and Dutchyn in
[Wand et al. 2004], who present a monadic denotational semantic for a simple
functional language ressembling Scheme and composed by global procedures,
advices and pointcut description. The semantic equations presented in their
10 Compare with the definition of replace, which applies the original version of the

function.

3603Tirelo F., Bigonha R.S., Saraiva J.: Disentangling Denotational ...

Sets:

v ∈ Val Expressed values
l ∈ Loc Locations
s ∈ Sto Stores
id ∈ Id Identifiers
pname,
wname ∈ Pname Procedure names
v ∈ Val Expressed values

Join points, pointcut designators:

jp ∈ JP
jp → 〈〉 | 〈k, pname,wname, v∗, jp〉
k → pcall | pexecution | aexecution
pcd → · · ·

Execution monad:
T (A) = JP × Sto → (A × Sto)⊥

Semantic Domains:

π ∈ Proc = Val∗ → T (Val) Procedures
α ∈ Adv = JP → Proc → Proc Advices
φ ∈ PE = Pname → Proc Procedure environments
γ ∈ AE = Adv∗ Advice environments
ρ ∈ Env = [Id → Loc] Environments

Figure 2: Working Example – Basic Definitions for the Semantics of Aspect-Oriented
Advices and Join Points (Taken from [Wand et al. 2004])

specification contain interleaved elements which makes it hard to fully under-
stand the key concepts of the definition. This paper simplifies that formalization
by applying the introduced mechanisms of incremental specification. This
case study is a first step to the validation of the proposed technique. The
presented version does not consider within and proceed clauses, which can be
straightfowardly included by means of environment decorations.

Figure 2 summarizes key features of the semantic specification, namely its
main domains and execution monad, which were taken ipsis litteris from the
original paper [Wand et al. 2004]. That paper also contains details on the alge-
bra of pointcuts, auxiliary functions, and monad operations, advised to readers
looking foward to deeply understand the formalization. Procedures are the start-
ing point of the definition. Procedure declarations are defined by function P,
which creates an procedure environment which associates the procedure name
with the corresponding procedure semantics:

P : Procedure → PE → PE
P[[(procedure pname (x1, · · · , xn) e)]] φ = [proc/pname]
where proc = λ(v1, · · · , vn). let l1 ⇐ alloc v1; · · · ; ln ⇐ alloc vn

in E [[e]] [l1/x1, · · · , ln/xn] φ

Procedure calls are defined by means of function E , which evaluates the argu-
ments and applies to it the procedure bound in the environment:

E : Exp → Env → PE → T (Val)
E [[(pname e1 · · · en)]] ρ φ = let v1 ⇐ E [[e1]] ρ φ; · · · ; vn ⇐ E [[en]] ρ φ

in φ pname (v1, · · · , vn)

The first step to include aspect-oriented features consists of defining proce-
dures to depend on advice environments, which is solved by means of trans-

3604 Tirelo F., Bigonha R.S., Saraiva J.: Disentangling Denotational ...

transformation include-advices
signature E : Exp → Env → PE → T (Val)

to Exp → Env → PE → (γ : AE) → T (Val),
P : Procedure → PE → PE to Procedure → PE → (γ : AE) → PE

default γ = []
replace P[[(procedure pname (x1, · · · , xn) e)]] φ γ

by [(enter-jp γ (new-pexecution pname) proc)/pname]
where proc = P[[(procedure pname (x1, · · · , xn) e)]] φ γ,

E [[(pname e1 · · · en)]] ρ φ γ
by E [[(pname e1 · · · en)]] ρ (φ[proc/pname]) γ

where proc = λv∗.enter-jp γ (new-pcall pname v∗) (φ pname)
Figure 3: Transformation Function for Including Advices in the Specification

formation include-advices of Figure 3. This transformation: (a) includes advice
environment as argument of functions E and P by means of a signature change
clause; such environment is propapagated through recursive calls of function P,
and in the absence of an advice environment the default empty environment
is used; (b) decorates the procedure environment to weave execution advices,
by means of the first replace clause, which decorates the result of function P
with specific joinpoint marks; and (c) decorates the execution of procedure call
expressions to weave execution advices, by means of the second replace clause,
which decorates the procedure environment argument of function E with specific
joinpoint marks.

The semantics of advices are given by function A, which executes the advice
and the procedure bodies in the correct order, if the corresponding pointcut is
applicable to the procedure; otherwise, only the procedure body is executed.

A : Advice → PE → AE → JP → Proc → Proc
A[[(before pcd e)]] φ γ jp π =

λv∗.PCD[[pcd]] jp (λρ.let v1 ⇐ E [[e]] ρ φ γ; v2 ⇐ π v∗ in v2) (π v∗)
A[[(after pcd e)]] φ γ jp π =

λv∗.PCD[[pcd]] jp (λρ.let v1 ⇐ π v∗; v2 ⇐ E [[e]] ρ φ γ in v1) (π v∗)

By applying the proposed transformation techniques, one can provide vague
definition of procedures which can be extended to support advices by means of
transformations.

9 Conclusions

This paper presented a new approach to improve the modularity of denota-
tional semantic specifications. This approach, based on the vagueness properties
of initial definitions and on their transformations, may improve the readability
of semantic equations by separating the concerns on interfering language con-
structs. In an incremental definition, it is possible to include new constructs

3605Tirelo F., Bigonha R.S., Saraiva J.: Disentangling Denotational ...

without rewriting previously written equations, even in those cases where one
construct must prepare the context for others. The objective of the proposed
model is to permit that constructs be presented in a more intuitive way, which
can be closer to their usual natural language descriptions: each construct may
be isolated for better comprehension.

The proposed methodology for incremental definition provides simple mech-
anisms for the definition of programming languages semantics. The definition of
a language construct may be vague with regard to other constructs, and then
it becomes easier to understand its semantics, because the relationship among
constructs is separately defined and does not get in the way. Although vague-
ness is an essential feature in informal definitions, there is no way of controlling
it, and incomplete definitions may look like vague ones. When applied to for-
mal definitions, vagueness helps constructing the bond to informal definitions,
leading to a better readability. Furthermore, this technique can be used along
with other modularity approaches for denotational semantics, such as monads,
benefiting from their positive aspects.

A very difficult problem to handle in denotational semantics transformation
is to preserve two essential properties: irrelevance of definition order and ab-
stractness. The proposed methodology defines a recommended reading order for
the equations, because each specification could be interpreted as a chapter of the
language manual. However, future tool support should provide a way of generat-
ing the complete set of equations for any intermediate specifications, by weaving
transformation code into the existing equations.

Abstractness of denotational semantics is also preserved because all trans-
formations only require textual substitution to generate the woven specification.
Thus, transformation functions do not break abstractness of existing equations,
so that the denotation of a construct remains dependent only on the denotation
of its constituents and the current context as expected.

Furthermore, extensibility is improved by the separation of concerns provided
by vagueness in specifications. Higher degrees of extensibility are only achieved in
software systems when modules are simple and independent, because it becomes
easier to cope with modifications. Modules defined by means of the proposed
approach tend to handle minimal information, with direct impact on the overall
modularity quality.

Future work comprehends the investigation of techniques for implementing
the proposed constructs and further studies of its properties and consequences.
Although the transformations presented in this paper apply on the denotations
of language constructs, the authors believe that it can be implemented on top of
general term-based rewriting systems, such as Maude [Clavel et al. 2003]. Full
validation of the proposed model is under development. Because of the inherent
complexity of large scale programming languages, the proposed approach does

3606 Tirelo F., Bigonha R.S., Saraiva J.: Disentangling Denotational ...

not completely solve the scalability problem of denotational semantics, but rep-
resents an important step forward in the direction of simplifying the practical
use of this method.

Acknowledgments

This work is partially supported by CAPES (grant 3680-06-1), Fapemig
(grant 11740), and the Portuguese Science Foundation (FCT) (grant SFRH/B-
SAB/782/2008). The authors would like to thank professor Peter D. Mosses,
from Swansea University, for his valuable suggestions on a previous version of
this paper, as well as the anonymous referees whose insights were very helpful
in the production of the paper’s final version.

References

[Cenciarelli et al. 1999] P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-
based structural operational semantics of multi-threaded Java. Lecture Notes in
Computer Science, 1523:157–200, 1999.

[Clavel et al. 2003] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet,
J. Meseguer, and C. Talcott. The maude 2.0 system. In R. Nieuwenhuis,
editor, Rewriting Techniques and Applications (RTA 2003), number 2706 in
Lecture Notes in Computer Science, pages 76–87. Springer-Verlag, 2003.

[Moor et al. 2000] O. de Moor, K. Backhouse, and S. D. Swierstra. First-class at-
tribute grammars. Informatica, 24(3), 2000.

[Gamma et al. 1995] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Kiczales et al. 1997] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. In Proceedings of the
11th European Conference on Object-Oriented Programming, page 220ff. Springer-
Verlag, 1997.

[Liang et al. 1995] S. Liang, P. Hudak, and M. Jones. Monad Transformers and Mod-
ular Interpreters. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 333–343, New York, NY,
USA, 1995.

[Moggi 1991] E. Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–
92, 1991.

[Mosses 1977] P. D. Mosses. Making denotational semantics less concrete. In Proc.
Int. Workshop on Semantics of Programming Languages, Bad Honnef, number 41
in Bericht, pages 102–109. Abteilung Informatik, Universität Dortmund, 1977.

[Mosses 2004] P. D. Mosses. Modular structural operational semantics. J. Logic and
Algebraic Programming, 60–61:195–228, 2004. Special issue on SOS.

[Mosses 2005] P. D. Mosses. A constructive approach to language definition. Journal
of Universal Computer Science, 11(7):1117–1134, 2005.

[Wand et al. 2004] M. Wand, G. Kiczales, and C. Dutchyn. A semantics for advice
and dynamic join points in aspect-oriented programming. ACM Trans. Program.
Lang. Syst., 26(5):890–910, 2004.

[Wansbrough and Hamer 1997] K. Wansbrough and J. Hamer. A Modular Monadic
Action Semantics. In Proceedings of the Conference on Domain-Specific Languages,
Santa Barbara, California, pages 157–170. The USENIX Association, 1997.

3607Tirelo F., Bigonha R.S., Saraiva J.: Disentangling Denotational ...

