
Electronic Notes in Theoretical Computer Science 38 (2000)
URL: http://www.elsevier.nl/locate/entcs/volume38.html 13 pages

Object Oriented Languages with Abstractions
for Mobile Computation

Marco Túlio de Oliveira Valente,

Institute of Informatics, Catholic University of Minas Gerais, Brazil,
E-mail: mtov@pucminas.br

Roberto da Silva Bigonha, Antônio Alfredo Ferreira Loureiro
and Mariza Andrade da Silva Bigonha

Department of Computer Science, Federal University of Minas Gerais, Brazil,
E-mail: {bigonha,loureiro,mariza}@dcc.ufmg.br

Abstract

Recently, the notion of mobile computation has been proposed as an alternative
to the construction of distributed applications in the Internet. Some processes cal-
culi have already been designed to model this style of Computation. The Ambient
Calculus of Cardelli and Gordon is the most distinguished among them. However,
to transform this kind of distributed application in a reality in the Internet, it is
necessary the design of programming languages supporting abstractions for mobile
computation. This paper shows a proposal that introduces these kinds of abstrac-
tions in object oriented languages.

1 Introduction

Currently, one of the main difficulties to the dissemination of distributed ap-
plications that explore all the computational power of the Internet is the
absence of abstractions that support their implementation [5]. Abstractions
traditionally used in the client/server model of distributed applications, such
as RPC [3] and CORBA [11], have been proposed to networks without prob-
lems of performance and availability, like local area networks. However, in
a world-wide, opened and decentralized network, like the Internet, these two
problems gain so great importance that any abstraction for computation in
this network must be capable to treat and, if possible, to attenuate the ef-
fect of them on the applications. Therefore abstractions for programming
distributed applications in the Internet must satisfy the following operational
requirements:

c©2000 Published by Elsevier Science B. V.

Valente et al.

• ability to support bandwidth fluctuations due to congestions in the network;

• ability to operate in a disconnect fashion, because it is not reasonable to as-
sume uninterrupted connection to the network, mainly in the case of mobile
devices, such as notebooks and personal digital assistants;

• ability to be executed in several architectures and operating systems that
exist in a world-wide network like the Internet;

• ability to be automatically installed in client workstations, preventing this
activity to be carried manually in the thousands of potencial clients of an
Internet distributed application.

Recently, the notion of mobile computation has been proposed as a solution
to the implementation of this type of application [5]. According to this notion,
the execution of an application does not need to be restricted to a single
workstation, but can roam over the network. This idea implies state mobility,
i.e., not only the application code moves, as in Java, but also the application
data. It is argued that this kind of mobility can reduce network load and
latency and can also make it possible the construction of applications more
robust to bandwidth fluctuations and that can execute disconnected from the
Internet.

Currently there are some theoretical models specifically designed to express
mobile computation. Among them, the Ambient Calculus [6] of Cardelli and
Gordon is the most prominent. However, being a formal model, the Ambient
Calculus possesses only the basic abstractions for specifying mobile computa-
tion and so its use is not recommended in practical applications. Therefore,
to this kind of application become a reality in the Internet, it is necessary the
design of programming languages with support to mobile computation. Such
languages are called Wide Area Languages (WAL) [5].

In this work, we show a proposal that introduces these kinds of abstractions
in an object oriented language. Instead of designing a new programming
language with the Ambient Calculus as its unique computational model, we
adopted a hybrid solution. In our approach, the applications continue to be
composed by a set of objects and only the constructions for communication
and mobility are inspired by the Ambient Calculus. As this solution does not
require learning a new computational model, we believe that it can induce the
dissemination of mobile applications in the Internet.

This paper is organized as follows. In Section 2, we describe the concept
of Wide Area Languages and show the principles and features that a language
must have to be classified as a WAL. In Section 3 we define a simple object
based language, to which we incoporate several abstractions for mobile compu-
tation. We also show in this section examples of the use of these abstractions
in applications such as plug ins, mobile agents and a conference reviewing
system. In Section 4, we mention works related to the kind of mobility con-
sidered in this paper. Finally, Section 5 concludes and show possibilities of
future work.

2

Valente et al.

2 Wide Area Languages

A Wide Area Language (WAL) is a language with constructions that are
semantically compatible with the principles of the Ambient Calculus and con-
sequently with the Internet [5]. Amongst those principles, the most important
are the following:

• WAN-Completeness: we must be able to easily implement in a WAL pro-
grams normally found in the Internet, such as applets, plug ins and mobile
agents.

• WAN-Soundness: a WAL can not make use of constructions based in action-
at-a-distance and continued connectivity.

In the Ambient Calculus terminology, action-at-a-distance denotes the idea
that resources are transparently and continuously available, no matter how far
away they are. This idea is largely used in languages for distributed program-
ming in LANs and thus is the main difference between these languages and a
WAL.

In order to fulfill these principles, a WAL must have the following features:

• A WAL must allow migration between nodes of the network of hierarquically
structured entities that contain both data and computation. This make a
WAL different from languages that allow, for instance, only object migra-
tion.

• A WAL must only allow communication between entities that share the
same location. In order to prevent action-at-a-distance, communication
between remote entities must be implemented through mobility .

• In a WAL, references to local entities must be done through names and not
through physical addresses of memory. In this way, the mobility of these
entities is not restricted by static bindings between them and their context
of execution.

• In a WAL, entities are accessed through blocking semantics, i.e., in case
that an entity is not locally available at the moment that another entity
tries to access it, the execution of the latter remains blocked until the entity
become available. This type of semantics simplifies the implementation of
dynamic linking and reconfiguration.

• In a WAL, access to resources of the context of execution must be done
using dynamic binding. In this way, when an entity migrates to another
context, it can automatically restablish the links to the resources it needs.

3 Abstractions for Mobile Computation

As mentioned in the introduction, the abstractions proposed in this paper
will be defined for an object oriented language. However, instead of using
a traditional language, such as C++ or Java, we have chosen to add these

3

Valente et al.

abstractions to an object based language. The reason is that these kind of
languages are simpler and more flexible than object oriented languages [1].
The language used in this paper is based in Obliq [4]. However, Obliq’s notions
of distributed lexical scope and transparent handling of network references
have not been considered in our language, because they are unsuitable for
computation in the Internet [5].

Applications in Obliq are organized as a set of objects. Being a object
based language, it does not have classes, inheritance and dynamic method
dispatching. These features are inherent to object oriented languages but
they have no semantic implication to mobile computation, which is based on
the notion of objects.

In Obliq, an object with fields x1, x2, . . . , xn is created in the following way:

{ x1 => a1, x2 => a2, ..., xn => an }

where each ai can be an attribute or method. An attribute is defined as in
the following example:

x => 3

A method definition has the form:

x => meth (y, y1, y2, . . . , ym) b end

where y is the self parameter, y1, y2, . . . , ym are the remaining parameters and
b is the method body.

Obliq variables do not have types. However, values carry their types to
execution time, thus allowing the language run-time to be strongly typed.

3.1 Containers, Contexts and Mobility

One of the main decisions in the design of Internet distributed systems should
be how to divide such applications in mobile and autonomous parts. Thus,
we propose a language construction to delimit these parts. In this paper, we
call this construction a container. A container is a wrapper of objects that
makes them mobile, that is, containers can move to contexts located in other
network nodes. Contexts are services available in nodes for remote execution
of containers, as showed in Figure 1. A context can also offer resources to
the execution of containers, like, for example, a window system or a data
structure. Contexts are identified by URLs of the form: host/name, where
host is the name of the workstation and name is the name of the context.

A container with objects p1, p2, . . . , pn is created by the following command:
new container (m, p1, p2, . . . , pn), where m is an optional parameter that de-
notes the name of the container. An object cannot belong simultaneously to
more than one container.

Container mobility is implemented by the following context operations:

• insert object (c, a): insert the object a in the container c;

• context jump (d): subjective mobility of containers to context d;

4

Valente et al.

Resources Resources

Context 1 Context 2

ObjectContainer

Fig. 1. Abstractions for Mobile Computation in the Internet

• move (c, d, p): objective mobility of container c to context d;

• this container: returns the name of the current container;

• is container available (n): tests if there is a container with name n in
the local context;

• is object available (n): tests if there is an object with name n in the
local context;

• new name: returns a container name that is unique in the network;

• here: returns the URL of the current context.

The operation context jump migrates the current container to the context
whose name is passed as a parameter. After this operation, the execution
continues in the next instruction, but inside the target context. In the Ambient
Calculus, this form of mobility is called subjective, since it is the object itself
that decides to move the container in which it is executing[6]. The operation
move is called in a container that is not the current one, being, therefore, called
objective mobility. After this operation, the execution in the source context
continues asynchronously in the next instruction. In the target context, the
execution begins by the method start of the object p and finishes when this
method returns.

In every context there is a pre-defined container named Context. Every
object that has not been inserted in another container belongs to this pre-
defined container.

3.2 Objects

Objects are handled by name semantics. Every object has an implicit name
that uniquely identifies it in every context of the network. A definition of the
form let x = { . . . } associates with the identifier x the name of the object
created. When an operation of the form x.op is executed, it is first verified

5

Valente et al.

if an object with the name denoted by x exists in the local context. If such
object exists, the operation op of this object is executed. In case that it does
not exist, the call remains blocked until this object become locally available.
Therefore, objects located in the current context are called available objects,
while remote objects are called unavailable objects.

This semantics for object manipulation keeps the language faithfull to
the Ambient Calculus principles, as it does not entail action-at-a-distance,
i.e., it does not allow transparent handling of network references as usual in
distributed languages for local area networks. Moreover, this name semantics
helps the free migration of objects wrapped in containers, as it does not create
static links between those objects and their context of execution.

There is also the operation is object available (r), which returns true if the
object denoted by r is available in the local context, and false otherwise.

Example: A Conference Reviewing System

We show next, as an example of an Internet application, the implementation of
a conference reviewing system, used by the program committee of a conference
for evaluation of the papers. This system is cited in [5] as example of an
application that can take benefit from the abstractions of a WAL. A feature
desired in such a system is the possibility of operation disconnected from
the network. This feature will allow a member of the program committee
to evaluate papers in his notebooks or in workstations that does not have a
dedicated connection to the Internet.

Suppose an article that has been sent for evaluation to a given reviewer.
As we intend to fulfill the requirement of disconnected operation, the solution
is to create a container with the objects needed for the evaluation and then
send it to the reviewer’s context, so that the evaluation can be done locally.
A possible implementation is presented below:

let cont= new container (article, evalform);
move (cont, reviewer.context, evalform);

In this code, article, evalform and reviewer are objects already created in
the program and that denote, respectively, the article to be evaluated, the
evaluation form and the reviewer. After the creation and initialization of the
container cont with these objects, we asynchronously send it to execution in
the context of the reviewer. In this context, as defined by the operation move,
the execution will begin by the method start of the object evalform. This
method can, for example, show in the workstation the evaluation form of the
paper. After that, the reviewer can decide to repass the article to a second
reviewer. To do so, the following operation should be executed:

context jump (n);

where n is the URL associated with the context of the new reviewer. This
second reviewer evaluates the article and then he executes a new context jump
to return the container to the context of the first reviewer. This reviewer, after

6

Valente et al.

checking the evaluation form, decides to send it to the context of the confer-
ence and to notify the chair of the program committee that the evaluation is
finished. This is accomplished by the execution of the following sequence of
code:

context jump (conference context);
chair.evaluationEnd (article.id);

Note that chair denotes the object that represents the chair of the program
committee. This object has remained unavailable while the container roamed
by the contexts of the reviewers. However, after the execution of this code,
the container is back to its source context, and therefore the object denoted
by chair become again available. Now it is possible to send without blocking
a message such as evaluationEnd.

3.3 Synchronization

The operation to coordinate the migration of container is:

let i= wait (n);

The wait operation blocks the execution until a container with name n
become available in the local context. When this happens, the execution
continues and i denotes a special object of the container, called interface
object. The interface object p of a container c is defined by the operation
set interface object (c, p). Another way to do this is through the flag “i”,
passed as a parameter to an insertion operation like the following: insert object
(c, p, “i”).

Example: Plug in Installation

Consider the conference reviewing system discussed in Section 3.2. In some
point of the reviewing process, papers have to be visualized. Using the pro-
posed abstractions we can easily define a plug in that provides a viewer for a
document format not available in the local context. This plug in can be repre-
sented by a container and its installation can be implemented in the following
way:

1: if not is container available ("acrobat")
2: then (* download the plug in from a remote context *)
3: let plugin= wait ("acrobat");
4: plugin.display (article.text);

In this program fragment, we suppose that will be visualized a document
in the pdf format. Initially, the pre-defined operation is container available
(line 1) verifies if there is in the local context a container named “acrobat”.
It must be previously known by the programmer that containers with this
name can show pdf documents. If there is no such container locally, we must
download it from a remote context (line 2). Then the operation wait (line 3)

7

Valente et al.

suspends the execution until such container is locally available. When this
happens, the operation returns the interface object of it. We can then use the
method display of this object to show the text of the paper (line 4).

3.4 Communication

Communication between objects of the same container works as in traditional
object oriented systems, that is, by exchanging synchronous messages. The
same occurs between objects of different containers but located in the same
context. However communication between objects of containers located in
different contexts is not done with the same degree of transparency, since
messages sent to unavailable objects are handled with a blocking semantics.
As considered in the Ambient Calculus, this type of communication must be
implemented by means of messenger containers that migrate to the remote
context, send locally the message to the receiving object and then return
with the result. In order to free the programmer from implementing all this
procedure, an abstraction for sending messages through containers migration
is proposed in this section.

Suppose that r denotes an unavailable object, located in context t. A
message msg can be sent to this object with the following syntax:

let x= t::r.msg (y);

Messages as this one, qualified with the name of the target context, are
sent through a messenger container, generated automatically in the following
way:

1: let p = { home => here,
2: local r => r,
3: start => meth (s)
4: let res = local r.msg (y);
5: insert object (this container, res, "i");
6: context jump (home);
7: end
8: };
9: let messenger = new container (p, y);
10: move (messenger, t, p);
11: let x= wait (messenger);

In the code above, a messenger container is created with an object p to send
the message and with the object y that represents the message parameter (line
9). The created container is sent to the context of the remote object (line 10),
where then the message msg is sent locally without the risk of blocking (line
4). Once sent the message, its result is inserted in the messenger container
(line 5) and then this container returns to the source context (line 6). Then,
in this context, x denotes the object with the result (line 11).

It should be noted in the code above that y is a free identifier in the
object denoted by p (line 4). In Obliq, due to the notion of distributed lexical

8

Valente et al.

scope, this identifier would remain associated with its source location, even
when the container migrates. However, in our approach such fact does not
happen. The reason is that objects are handled by means of name semantics
and operations on unavailable objects remain blocked. Thus, to prevent a
blocking in any operation executed on the parameter y, it is inserted in the
messenger container (line 9).

Example: Conference Reviewing System (continuation)

In the previous conference reviewing system, the reviewer in charge of the
evaluation of an article can need an extra period of time to produce its report.
To get this time, he must request it to the chair of the program committee.
However, as the object that represents this chair is unavailable in the context
of the reviewer, it is not possible to immediately send a message to it. The
solution then is to send a messenger to the context of the chair with the
message requestExtraTime (n), where n is the number of days. As described,
this messenger can be sent in the following way:

let r= conference context::chair.requestExtraTime (3);

The message above is qualified with the “address” to be followed by mes-
senger container.

3.5 Resources

A container can also move to another context to locally access the resources
it needs, reducing in this way the demand for network communication. First,
to indicate that an object p implements the interface to access a resource with
name n and to export this resource to the current context, we use the following
operation:

export resource (n, p);

As the resources of a context must be always available, containers that
export resources are not allowed to move.

In a client container, a reference r for a resource with name n can be
defined in the following way:

resource r= n;

Finally, it is proposed that resources are accessed through dynamic bind-
ing, that is, when a container moves to another context, references to resources
are automatically established with those of the same name in the new context.
In case that a resource with the required name does not exist in the target
context, all references for this resource will have a nil value.

Example: A Mobile Agent for E-Commerce

We show next the implementation of a container that represents a mobile
agent who searches the price of a book in a set of Internet bookstores. Each

9

Valente et al.

bookstore is represented by a context. In each bookstore, the agent, i.e.,
the container, gets the price of the desired book by accessing a resource that
represents the price list of the bookstore. After visiting the last bookstore, the
agent returns to its original context, where it then verifies which bookstore
has the lowest price.

In a system like this, each virtual bookstore must define a resource named
price list, representing its price list.

1: let p = { ..., search => meth (s, name) ...end, ...};
2: export resource ("price list", p);

The container that will carry out the search can be implemented in the
following way:

1: let q = { home => here,
2: number bookstores => 3,
3: bookstore => ["amazon", "bookpool", "iBS"],
4: price => [nil, nil, nil],
5: bookstore search => meth (s, name)
6: resource pl = "price list";
7: for i= 1 to number bookstores do
8: context jump (bookstore [i]);
9: price [i]:= pl.search (name);
10: end;
11: context jump (home);
12: end,
13:
14: cheapest price=> meth (s)
15: (* returns the cheapest price *)
16: end
17: };
18: let agent= new container (q);
19: q.bookstore search ("the art of computer programming");
20: let x= q.cheapest price ();

In this example, the variable pl is dynamically associated with the resource
named “price list” in each bookstore visited by the mobile agent (line 6). In
this way, we certify that the search operation (line 9) will always perform the
search for the book in the correct bookstore.

4 Related Work

Mobility was always present in abstractions for the construction of distributed
applications. In RPC [3], for example, we have control mobility and a limited
form of data mobility, usually only of basic data types. RPC is then an
abstraction used in the implementation of traditional client/server systems and
such that it does not fulfill any of the requirements of an Internet distributed
application as mentioned in Section 1. CORBA [11], in turn, has as objective

10

Valente et al.

the introduction of control mobility in object oriented languages. CORBA
also supports interoperation between diverse systems and provides location
transparency in the access to objects. However, being an evolution of the
RPC model, CORBA also does not take care of the operational requirements
of an Internet distributed application.

There are also languages that support object mobility. Among then Emer-
ald [7] is probably the most known. However, in the same way as Obliq [4],
these languages have been designed for local networks, allowing only the im-
plementation of applications based in action-at-a-distance and, therefore, in-
adequate to a network like the Internet.

Java [2] is currently the language most used in the implementation of Inter-
net applications. Although Java supports code mobility, it does not support
state mobility. With code mobility, we can guarantee execution in diverse
operating systems and prevent the manual installation of applications in the
client workstations. However, as the application still depends on the net-
work to get the information needed to its execution, the model is not robust
enough to deal with communication failures, nor capable to operate discon-
nected from the network. Java also support control mobility through the
library Java RMI [10].

Recently, mobile agents have been considered as an alternative to the con-
struction of Internet distributed systems. A mobile agent is a program that
can roam through the machines of a network, carrying the state of its exe-
cution. Telescript [12] was the first language to support the implementation
of mobile agents. Later, with the dissemination of Java, other systems based
on this language appeared, like Aglets [8] and Voyager [9]. Although these
languages support state mobility, that is, the same form of mobility proposed
in this work, mobile agents are monolithic and stand alone programs, designed
to realize specific tasks. In general, these systems use a primitive mechanism
for communication between agents, based on message exchange and action-at-
a-distance. In none of them there is a higher level abstraction for composition
of diverse agents in a distributed application of realistic size.

5 Conclusions

This paper has showed a proposal for introducing abstractions for mobile com-
putation, inspired in the Ambient Calculus, in an object oriented language.
The proposed language fulfills the following principles of a Wide Area Lan-
guage (WAL):

• Completeness: by means of the examples included in the paper, we showed
the usability of the proposed abstractions in the implementation of typical
Internet applications, like plug ins and mobile agents, and also in the im-
plementation of applications that require operation in disconnected mode,
like the conference reviewing system.

11

Valente et al.

• Consistency: the notion of containers and the use of name semantics do not
allow the construction of applications based on action-at-a-distance or that
require continuous connectivity.

Before the implementation of a real language that incorporates the pro-
posed abstractions, we intend to study the following features:

• An exception handling mechanism capable to handle exceptions related to
communication and mobility. This mechanism must, for example, allow a
certain degree of flexibility in the blocking semantics used in the execution
of operations on unavailable objects.

• Constructions to allow dynamic reconfiguration of containers, making possi-
ble to change the implementation of a remote container without restarting
its execution. This feature is useful in applications designed to execute
continuously.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] K. Arnold and J. Gosling. The Java Programming Language. Addison Wesley,
2nd edition, 1997.

[3] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM
Transactions on Computer Systems, 2(1):39–59, Feb. 1984.

[4] L. Cardelli. A language with distributed scope. Computing Systems, 8(1):27–
59, 1995.

[5] L. Cardelli. Abstractions for mobile computation. In J. Vitek and
C. Jensen, editors, Secure Internet Programming: Security Issues for Mobile
and Distributed Objects, volume 1603 of Lecture Notes in Computer Science,
pages 51–94. Springer-Verlag, 1999.

[6] L. Cardelli and A. Gordon. Mobile ambients. In M. Nivat, editor, Foundations
of Software Science and Computational Structures, volume 1378 of Lecture
Notes in Computer Science, pages 140–155. Springer-Verlag, 1998.

[7] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the
Emerald system. ACM Transactions on Computer Systems, 6(1):109–133, 1988.

[8] D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents
with Aglets. Addison-Wesley, 1998.

[9] Object Space. Voyager core package technical overview. Technical report,
Object Space Inc., 1997.

[10] Sun Microsystems. Java Remote Method Invocation Specification, Oct. 1998.

12

Valente et al.

[11] S. Vinoski. CORBA: Integrating diverse applications within distributed
heterogeneous environments. IEEE Communications Magazine, 14(2), Feb.
1997.

[12] J. E. White. Mobile agents. In J. Bradshaw, editor, Software Agents, pages
437–472. AAAI Press/MIT Press, 1997.

13

	Introduction
	Wide Area Languages
	Abstractions for Mobile Computation
	Containers, Contexts and Mobility
	Objects
	Synchronization
	Communication
	Resources

	Related Work
	Conclusions
	References

