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ABSTRACT
Software evolution consists of adapting, correcting, and updating a
system. It is widely known that the systems became increasingly
complex and challenging to be maintained over their evolution.
However, the way the systems’ internal structure evolves is not
known in detail. Understanding how the internal software struc-
ture evolves is essential to help developers better plan, manage,
and perform software maintenance tasks. In this work, we present
an empirical analysis to investigate how the internal structure of
object-oriented systems evolves from the perspective of inheritance
hierarchy and size. Besides, we analyzed the set of classes within
the systems that affect these dimensions’ evolution and how such
classes evolve. We used a methodology based on time series, linear
regression techniques, and trend tests to analyze the evolution of
object-oriented systems. Using this methodology, we identified the
function that better explains how the size and the inheritance tree
evolve. This study revealed eight software evolution properties,
among them: inheritance hierarchy tends to increase in depth and
decrease in breadth; inheritance hierarchy depth and the size of
classes grow according to a linear model. The empirical evidence
found in this work provides a fine-grained knowledge of how object-
oriented software systems’ internal structure evolves from internal
dimensions.

CCS CONCEPTS
• Computer systems organization→ Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.

KEYWORDS
Software Evolution, Software Metrics, Inheritance, Size, Time Series

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SBQS ’21, November 08–11, 2021, Vitória, ES
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

ACM Reference Format:
Bruno L. Sousa, Mariza A. S. Bigonha, Kecia A. M. Ferreira, and Glaura
C. Franco. 2018. Characterizing the Evolution of Size and Inheritance in
Object-Oriented Software. In Woodstock ’18: ACM Symposium on Neural
Gaze Detection, June 03–05, 2018, Woodstock, NY . ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Software evolution consists of developing, maintaining, and updat-
ing software systems [34]. If a software system does not evolve, it
risks losing market share to competitors [39]. Nevertheless, soft-
ware maintenance is a challenging, complex, and time-consuming
task. During a software life cycle, the internal software structure
usually suffers several changes to accommodate the modifications
and meet the users’ demands, resulting in high costs. Thus, it is
essential to understand how the systems’ internal structure evolves
to control and reduce the software costs and efforts.

To provide empirical evidence about how software evolution
occurs, Lehman et al. [33–39] analyzed the evolution of a system
and identified eight characteristics of software evolution. Such char-
acteristics are known as Lehman’s laws and became a landmark
on this topic. Researchers have investigated how the software sys-
tems evolve from the internal aspects, e.g., inheritance hierarchy
[9, 13, 24, 41, 44, 50] and size [5–8, 20, 21, 25–28, 32, 47]. Although
the literature has investigated how software systems evolve, there
is still no exact characterization of how this evolution occurs. For
instance, the works have investigated inheritance and its impact on
the internal software quality [9, 13, 24, 41, 44, 50]. However, they
have not detailed how the evolution of this aspect occurs or which
pattern it follows. The evolution pattern of size in software systems
is open in the literature since there is no well-defined pattern on
how this aspect evolves. The size’s pattern has already been defined
as super-linear [20, 21, 27, 32], sub-linear [5, 8, 28], linear [47], and
following the Pareto distribution [26]. Considering that all these
gaps still existing in the literature have motivated us to investigate
and detail how software systems’ internal dimensions evolve.

This work inspects accurately how object-oriented software
evolves considering two dimensions: inheritance hierarchy and
size. We aim to identify the evolution pattern of these dimensions.
To do that, we investigate the following research questions:

RQ1. Which model better describes the evolution pattern of the
dimensions in software systems?
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RQ2. What set of classes within the software affects the dimen-
sions growth and decrease, and how do these classes evolve?

We use time series with data from four software metrics: NOA
(Number of Attributes) and NOM (Number of Methods), for size,
andDIT (Depth of Inheritance Tree) andNOC (Number of Children),
for characterizing inheritance hierarchy. NOA and NOM are the
numbers of attributes and methods of a class [40]. DIT indicates
the depth of a class in its inheritance hierarchy, and NOC is the
number of immediate subclasses of a given class [10]. We chose
them because they are the size and inheritance software metrics
that the dataset used in this study provides. The dataset is available
in the literature, and it was used to analyze causality among internal
object-oriented dimensions [11]. The data analyzed in this study
are from 10 Java-based open-source projects. We did not consider
data of LOC (Lines of Code) to measure class size because many
previous studies have performed an analysis of software evolution
with this metric [5–7, 15, 20, 21, 25–28, 32, 47].

This work contributes with eight properties of object-oriented
software evolution regarding inheritance hierarchy and size. The
properties extracted in this work are:

(1) the inheritance hierarchy increases in depth and decreases
in breadth;

(2) inheritance hierarchy depth grows according to a linear
model;

(3) inheritance hierarchy breadth decreases according to a qua-
dratic model;

(4) a small part of the system influences the evolution of the
inheritance hierarchy;

(5) depth and breadth evolution are not associated;
(6) size of classes grows according to a linear model;
(7) a small group of classes affects the evolution of system size;
(8) the evolution of NOA and NOM are associated.
The organization of this paper comprises: Section 2 presents the

used dataset. In Section 3, we describe our methodology. Section 4
reports the main results of inheritance hierarchy and size evolution.
Section 5 summarizes the evolution properties. Section 6 discusses
the threats to validity and our decision to mitigate them. Section 7
presents some related works, and Section 8 concludes this paper.

2 DATASET
The data analyzed in this work are from the public dataset COMETS
(Code Metrics Time Series), which contains time series regarding 17
software metrics extracted from 10 open-source Java systems. The
metrics provided by COMETS are (i) Number of Attributes (NOA),
(ii) Number of Public Attributes (NOPA), (iii) Number of Private
Attributes (NOPRA), (iv) Number of Attributes Inherited (NOAI),
(v) Number of Lines of Code (LOC), (vi) Number of Methods (NOM),
(vii) Number of Public Methods (NOPM), (viii) Number of Private
Methods (NOPRM), (ix) Number of Methods Inherited (NOMI), (x)
Fan-in, (xi) Fan-out, (xii) Weighted Methods per Class (WMC), (xiii)
Depth of Inheritance Tree (DIT), (xiv) Number of Children (NOC),
(xv) Coupling Between Objects (CBO), (xvi) Response For a Class
(RFC), and (xvii) Lack of Cohesion in Methods (LCOM).

The time series in COMETS comprehend an interval of bi-weeks,
i.e., 14 days between the observations [11]. Table 1 summarizes the
central COMETS’ characteristics.

We identified the other three datasets withmetric data: D’Ambros
dataset [14], Helix [51], and Qualitas Corpus [49]. However, Quali-
tas Corpus does not provide time series for object-oriented metrics,
and Helix does not include the time series of all metrics used in
this study. D’Ambros’ dataset provides a time series of inheritance
and size metrics, comprising between 90 and 99 observations for
five systems. In contrast, COMETS comprises a more significant
number of systems and versions, as shown in Table 1. Therefore,
we decided to use COMETS because it is the largest dataset we have
identified with time series regarding inheritance hierarchy and size
metrics.

3 RESEARCH METHOD
This section presents the research method we used to analyze how
the inheritance hierarchy and size metrics evolve. All statistical
analyses used in this work are considered significant on a 5% level.

3.1 Behavior Analysis
We consider in this work the time series computed at the class level.
A system has many time series, which need to be normalized to
extract a global serial measure for the systems. We use DIT and
NOC metrics to characterize inheritance hierarchy and NOA and
NOM to characterize size. We modeled the values of DIT and NOC
by a statistical distribution in which the average is representative
[17, 18]. In contrast, the average is not representative of the statis-
tical distribution of the NOA and NOM values since these metrics
follow a heavy-tailed distribution [17, 18]. Hence, we use the arith-
metic average to normalize the DIT and NOC values and the sum
to normalize the NOA and NOM values. A global time series is
obtained by extracting the arithmetic average or sum from metric
values of all classes for each version of a system.

We use linear regression methods [16] to model the global time
series. We chose regression techniques instead of other techniques,
e.g., ARIMA [3], due to its flexibility and adequacy to analyze time
series in version scale. Considering that standard linear regression
is not efficient with autocorrelated data, which is the case of time
series, we also implemented some adjustments. We modeled the
metrics of inheritance hierarchy – DIT and NOC –, and size –
NOA and NOM – using the following types of model: (i) linear; (ii)
quadratic (polynomial at degree 2); (iii) cubic (polynomial at degree
3); (iv) logarithmic at degree 1; (v) logarithmic at degree 2; and (vi)
logarithmic at degree 3. The regression modeling in this work aims
to characterize the evolution pattern of the inheritance hierarchy
and size in the software systems and no provide a prediction model.

However, a system usually goes through several modifications
and refactoring processes over its lifetime, and these activities may
change the system’s time series pattern or even affect its prediction.
To deal with events that impact changes in a time series, we carry
out an intervention analysis. Intervention analysis is a technique
that evaluates and measures the effects these external factors cause
in the time series [52]. This analysis evaluates the breakpoints
that change the time series behavior and incorporates these critical
points in themodel aiming to adjust it to the new time series pattern.
The intervention analysis allows us to improve the representation
quality of the models.
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Table 1: Systems of the COMETS dataset.

# System Name Description Time Frame # Versions
1 Eclipse JDT Core Compiler and other tools for Java 07/01/2001 - 06/14/2008 183
2 Eclipse PDE UI Set of tools to create, develop, test, debug and deploy Eclipse

plug-ins, fragments, features, update sites and RCP products
06/01/2001 - 09/06/2008 191

3 Equinox Framework OSGi application implementor 01/01/2005 - 06/14/2008 91
4 Hibernate Core Database persistence framework 06/13/2007 - 03/02/2011 98
5 JabRef Bibliography reference manager 10/14/2003 - 11/11/2011 212
6 Lucene Search software and document indexing API 01/01/2005 - 10/04/2008 99
7 Pentaho Console Software for business intelligence 04/01/2008 - 12/07/2010 72
8 PMD Source code analyzer 06/22/2002 - 12/11/2011 248
9 Spring Framework Java application development framework 12/17/2003 - 11/25/2009 156
10 TV-Browser Electronic TV guide 04/23/2003 - 08/27/2011 221

Time series may also contain autocorrelation, i.e., a serial corre-
lation between their values [12]. When we model autocorrelated
data using linear regression, we need to incorporate the autocor-
relation in the models detected in their residual to ensure a good
representation of the data [2]. The inclusion of the autocorrelation
in the models is performed via autoregression, using observations
from previous time steps to model the value at the next time [12].
Hence, we evaluate the models’ errors and incorporate the auto-
correlation of our data in the generated models. After applying
the autoregression in the residuals of the models, we include the
autoregressive error coefficient into its respective model.

Finally, we compute the adjusted determination coefficient (𝑅2)
to assess the adequacy of the models. 𝑅2 is a measure of adjustment
of a model, which allows us to understand to which extent the
model explains the variability of analyzed data [42]. We chose 𝑅2

because it considers the number of parameters introduced in the
model and penalizes the inclusion of less critical parameters. We
also compare the 𝑅2 values and select the type that better describes
the evolution of the metrics using an evaluation protocol composed
of three stages:

(1) Relevance: select models with 𝑅
2 higher than or equal to

90%.
(2) Coverage: among the models chosen in the previous stage,

coverage selects the ones that cover the most significant
number of systems.

(3) Simplicity: if we pick more than one model in Stage 2, we
opt for the simplest model considering the order: (i) linear,
(ii) quadratic, (iii) cubic, (iv) logarithmic at degree 1, (v) loga-
rithmic at degree 2, and (vi) logarithmic at degree 3.

3.2 Trend Analysis
In the COMETS dataset, the -1 value indicates that a particular com-
ponent is not present in a particular system version. These values
are not representative of our analysis. Hence, we remove them and
reorganize the time series observations considering only the values
greater than -1. Besides, classes may be included and removed at
any moment over the evolution process of object-oriented software.
These changes may introduce a phenomenon in some classes that
we named ghost class, that should be identified in the systems time
series. Ghost classes are composed of breaks in the observations

that divide the time series into several small sub-series. This break
in the middle of the time series makes the trend analysis unfeasible.
Therefore we identify and remove classes with this phenomenon
from our analysis not to introduce bias in our study.

After organizing the data, we apply trend tests in the time series
to identify whether it has a growth or a decrease trend. We used
three tests based on hypothesis analysis to define the presence of
trends in time series: (i)] Mann-Kendall [29]; (ii) Cox-Stuart [43];
and (iii) Wald-Wolfowitz [43]. We chose them because they are
useful and efficient [29, 43]. We consider the following hypotheses:

• H0: there is no trend in the time series.
• H1: there is a trend in the time series.

Statistical tests may be prone to errors. Then, we defined the
following criteria to consider the results of the three tests to de-
termine the presence of trend: “time series has a trend if, and only
if, the null hypothesis is rejected at least in two of the three tests”.
When removing -1 values, some time series may substantially re-
duce their number of observations. To avoid applying trend tests
in tiny time series, we analyze the trend in time series with ten or
more continuous observations.

The Mann-Kendall test is sensitive to the presence of autocorre-
lation, and it may generate false-positives or false-negatives [23].
We developed an automatic checking approach to identify time
series with autocorrelation to mitigate this problem. It analyzes the
autocorrelation (ACF) and partial autocorrelation (PACF) plots of
the time series to find the autocorrelated ones. ACF consists of a cor-
relation of any series with its lagged values plotted along with the
confidence band [3]. It describes how well a given value is related
to its past observations. PACF consists of a plot of the partial corre-
lation of the series with its own lagged values regressed at shorter
lags. Non-stationary series were properly made stationary by taking
successive differences in the original series. In the time series with
autocorrelation, we use a modified Mann-Kendall test to evaluate
trends instead of the original test. Hamed and Rao [23] modified the
value of the variance from the original test and proposed a modified
approach more suitable and powerful for autocorrelated data.

After running the statistical tests, we apply the trend criteria
and identify the time series with a trend. We analyze the p-values
resulting fromCox-Stuart,Wald-Wolfowitz, andMann-Kendall - the
original version for time series without autocorrelation or modified
for time series with autocorrelation -. Finally, we evaluate the type
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of trend in the time series by plotting each time series chart from
the systems and visually analyzing their behavior. We manually
classify the trends considering the following types:

• Upward trend: a pattern whose distance between the trend
line and the x-axis increases over the x-axis.

• Downward trend: a pattern whose distance between the
trend line and the x-axis decreases over the x-axis.

• Undefined trends: they are cases that do not follow a clear
pattern. We also include here trends of times series whose
values of the first and last observations are equal.

4 RESULTS
This section presents the results we found for inheritance hierarchy
and size evolution in object-oriented systems.

4.1 Analysis of the Dimensions Evolution in
the System Level

This section presents the results of the investigation of RQ1.
RQ1. Which model better describes the evolution pattern of the

dimensions in software systems?
The analysis presented in this section investigates how inher-

itance hierarchy and size evolves and identifies the pattern that
better describes this evolution.

We applied our method based on regression techniques to the
global metrics time series from COMETS’ systems. However, before
modeling the time series, we analyzed these metrics’ behavior over
the evolution. We plotted the global time series extracted from the
analyzed systems as line charts. In these charts, we evaluated if the
metrics increase or decrease over time. Figure 1a exhibits the global
time series charts regarding DIT and NOC, while Figure 1b shows
the global time series charts from NOA and NOM.

4.1.1 Inheritance Analysis. Given the DIT evolution shown in Fig-
ure 1a, we observed that, for five systems, the global average of
DIT increases over time. This phenomenon happens in Eclipse
PDE UI, JabRef, PMD, Spring Framework, and TV-Browser. On
the other hand, Eclipse JDT Core and Hibernate Core DIT de-
crease slowly and smoothly. Pentaho Console initially presents
an increase of DIT, and then it decreases along with some releases,
and then, such decrease becomes slow and smooth over time. We
noted a high decrease of the global DIT in Eclipse JDT Core

between the 100𝑡ℎ and 120𝑡ℎ versions, resulting from the refactor-
ing or restructuring process in this system. However, before and
after this event, DIT’s global behavior in this software decreases
very smoothly and is almost stable. Moreover, we observed that the
global average of DIT in the Equinox Framework and Lucene’s
life cycle is practically constant, although there were some smooth
variations in the systems’ time series. We may then infer that DIT’s
global average tends to increase slightly over the software evolution
in most systems.

Concerning the NOC evolution, we analyzed the charts in Fig-
ure 1a and identified that, in 60% of the systems, NOC decreases over
time and, in some cases, such decrease is minimal. The systems pre-
senting this pattern are Eclipse JDT Core, Equinox Framework,
Hibernate Core, Lucene, Pentaho Console, and PMD. In Eclipse
JDT Core, the series starts with a high value and drops shortly

after that. NOC’s global average follows a very smooth decreasing
pattern, remaining almost stable over the whole system life cycle.
On the other hand, in some systems, the global NOC has a growth
behavior over their life cycle. The systems that presented this pat-
tern are Eclipse PDE UI, JabRef, and TV-Browser. In Spring
Framework, although the global NOC time series has smooth varia-
tions over time, it follows a stable pattern and remains practically
constant over this system’s life cycle. This analysis concludes that
the global average of NOC decreases over the software evolution,
tending to achieve zero. This result suggests that classes do not
have many children in the software context, and they tend to reduce
this number.

4.1.2 Size Analysis. Analyzing Figure 1b, we observed that NOA
and NOM have a growth behavior in all the analyzed systems, i.e.,
the systems tend to increase their size in terms of attributes and
methods over their life cycle. Although NOA and NOM grow over
the software evolution, when comparing their global time series,
we observed that NOM values are hugely higher than NOA in
all analyzed systems, considering the absolute values in the time
series. The exception is JabRef because NOA starts higher than
NOM and follows this configuration up to the 17𝑡ℎ release. Then,
NOM exceeds NOA and continues to grow faster than NOA over
the JabRef evolution.

4.1.3 Modeling Analysis. After observing the metrics’ evolution
pattern, we modeled their global time series and assessed the gen-
erated models with our evaluation protocol (Section 3.1). Table 2
shows the results obtained for DIT and NOC, and Table 3 summa-
rizes the results obtained for NOA and NOM. The “lin.”, “quad.”,
“cub.”, “log. 1”, “log. 2”, and “log. 3” columns indicate the 𝑅2 scores
extracted for linear, quadratic, cubic, logarithmic at degree 1, loga-
rithmic at degree 2, and logarithmic at degree 3 models, respectively.

To improve our discussion about the results, we adopted a color
scheme highlighting the models selected in each stage. The green
color indicates the models selected at Stage 1. Yellow shows the ones
chosen in Stage 2, and red specifies the only model type selected
at Stage 3, which is the one that better characterizes the pattern
evolution of the metrics by following the parsimonious criteria.

Analyzing the DIT results in Table 2, we observe that most
models have an 𝑅

2 score higher than 90%. There is no model with
𝑅
2 higher than or equal to 90% in Equinox Framework. Figure 1a

shows that the Equinox Framework’s evolution is very stable, with
minimal variations in the DIT time series. This chart shows that the
Equinox Framework contains a very smooth trend in the global
DIT time series. Therefore, the models could not capture this trend
and generate suitable adjustments to this particular time series. We
identify that linear, quadratic, cubic, logarithmic at degree 1, and
logarithmic at degree 2 attend Stage 2 of our evaluation protocol for
the initially selected models. However, by applying the simplicity
criteria, we conclude that the linear model is the one that better
explains the growth evolution pattern of the DIT global average
since it attends all aspects of our evaluation protocol.

The results of NOC reported in Table 2 shows that most of the
generated models have 𝑅2 values higher than 90%. However, there
is no model with 𝑅

2 higher than or equal to 90% for the global
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(a) DIT and NOC. (b) NOA and NOM.

Figure 1: Global metrics time series of the analyzed systems.

Table 2: 𝑅2 values computed from the DIT and NOC models.

System DIT NOC
lin. quad. cub. log. 1 log. 2 log. 3 lin. quad. cub. log. 1 log. 2 log. 3

Eclipse JDT Core 98.00% 97.41% 98.28% 98.07% 97.48% 98.35% 88.99% 91.61% 91.99% 89.08% 91.72% 92.11%
Eclipse PDE UI 97.81% 97.87% 97.83% 97.45% 97.53% 97.52% 97.13% 96.69% 97.16% 96.92% 96.46% 96.95%
Equinox Framework 86.89% 85.01% 86.49% 86.95% 85.10% 86.54% 86.05% 67.85% 85.70% 86.68% 68.08% 86.28%
Hibernate Core 96.54% 96.67% 96.58% 96.58% 96.71% 96.59% 94.67% 94.93% - 94.80% 95.12% -
JabRef 98.69% 98.69% 98.79% 98.68% 98.67% 98.64% 94.81% 94.79% 95.05% 94.71% 94.70% 94.99%
Lucene 92.23% 92.21% 89.52% 92.13% 92.11% 89.42% 96.07% 92.03% - 95.86% 91.43% -
Pentaho Console 75.49% 83.43% 90.92% 77.50% 85.05% 91.62% 76.80% 76.83% 78.40% 79.45% 81.35% 82.52%
PMD 97.61% 97.64% 96.52% 97.79% 97.82% 96.84% 93.83% 93.83% 93.43% 93.86% 93.84% 93.83%
Spring Framework 97.21% 97.04% 97.08% 97.09% 96.98% - 90.57% 90.67% 91.48% 90.76% 90.91% 91.63%
TV-Browser 98.24% 98.09% 97.94% 98.11% 97.97% 97.81% 96.57% 96.74% 96.74% 95.08% 94.79% 95.26%

NOC in the Equinox Framework and Pentaho Console. Analyz-
ing the NOC global time series of these systems in Figure 1a, we
observe many occurrences of interventions and change points in

the Pentaho Console time series, which avoid defining a function
to model it with a good 𝑅2 value. Concerning Equinox Framework,
the global NOC time series trend is very smooth, almost constant,
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Table 3: 𝑅2 values computed from the NOA and NOMmodels.

System NOA NOM
lin. quad. cub. log. 1 log. 2 log. 3 lin. quad. cub. log. 1 log. 2 log. 3

Eclipse JDT Core 99.82% 99.82% 99.83% 99.77% 99.79% 99.79% 99.80% 99.81% 99.81% 99.76% 99.77% 99.77%
Eclipse PDE UI 99.73% 99.73% 99.73% 99.61% 99.56% 99.51% 99.85% 99.85% 99.85% 99.78% 99.80% -
Equinox Framework 98.25% 98.24% 98.22% 97.68% 97.86% 97.84% 99.29% 99.31% 99.31% 99.30% 99.33% 99.33%
Hibernate Core 98.75% 98.79% - 98.86% 98.88% - 98.61% 98.67% - 98.71% 98.73% -
JabRef 99.81% 99.81% 99.82% 99.70% 99.71% 99.77% 99.84% 99.84% 99.86% 99.67% 99.67% 99.70%
Lucene 99.30% 98.99% 99.29% 99.44% 99.03% 99.45% 99.09% 98.79% 99.08% 99.28% 98.90% 99.29%
Pentaho Console 98.11% 98.09% 98.25% 97.52% 97.49% 97.90% 98.41% 98.42% 98.52% 97.99% 97.98% 98.09%
PMD 99.51% 99.51% 99.53% 98.98% 98.92% 98.62% 99.23% 99.20% 99.16% 98.96% 98.96% 98.96%
Spring Framework 99.93% 99.94% 99.92% 99.91% 99.91% 99.91% 99.93% 99.94% 99.91% 99.88% 99.88% 99.89%
TV-Browser 99.90% 99.90% 99.90% 99.42% 99.58% 99.85% 99.92% 99.93% 99.93% 99.50% 99.69% 99.80%

and then the models could not capture this tendency to generate
proper adjustments for this system. Two models, quadratic and
logarithmic at degree 2, attend Stage 2 of our evaluation protocol.
By applying the simplicity criteria, we conclude that the quadratic
model better describes NOC’s decrease pattern. Besides, consid-
ering that the global average of NOC does not decrease fast and
there are several fluctuations between the system’s versions, the
quadratic function is the one that best adjusts to NOC decrease
pattern.

Regarding NOA results in Table 3, almost all models presented 𝑅2

scores higher than or equal to 90%. We identify only two exceptions
to which there is no relevant model, the cubic and logarithmic at
Degree 3 models for the Hibernate Core global time series. Due
to this, we did not highlight these cases with green. We observe
that linear, quadratic, logarithmic at degree 1, and logarithmic at
degree 2 described all the systems’ global time series and attended
Stage 2 of our protocol for the initially selected models. However,
applying the simplicity criteria, we conclude that the linear model
is the one that better explains the growth evolution pattern of NOA
since it has attended all aspects of our evaluation protocol.

In the case of NOM, reported in Table 3, we also identify that
most of the produced models had good 𝑅2 values. Three cases were
selected at Stage 1 because our method could not find models rep-
resenting them: cubic and logarithmic at degree 3 for Hibernate
Core and logarithmic at degree 3 for Eclipse PDE UI. Due to this,
we did not highlight these cases with green. Among the selected
cases at Stage 1, we observe that linear, quadratic, logarithmic at de-
gree 1, and logarithmic at degree 2 models represented all systems’
global time series. However, following Stage 3 of our evaluation
protocol, we conclude that the linear model better explains the
global evolution pattern of NOM as well as for NOA.

Summary ofRQ1. Inheritance hierarchy slightly grows in depth
and decreases in breadth over the evolution. The linear model bet-
ter explains the DIT growth pattern, and a quadratic-order model
better describes the decrease pattern of NOC. Regarding size, the
number of attributes and methods of classes increases over the
software evolution following a linear model.

4.2 Analysis of Growth and Decrease of the
Dimensions

This section describes the analysis of the inheritance hierarchy to
answer RQ2.

RQ2.What set of classes within the software affects the dimensions
growth and decrease, and how do these classes evolve?

To answer this research question, we initially identified the
classes in the analyzed systems responsible for increasing and de-
creasing their inheritance hierarchy’s depth or breadth. Then, we
carried out the trend analysis considering the time series regarding
the systems’ classes and extracted the percentage of classes that
had growth and decrease in DIT and the classes with growth and
decrease in NOC. Figure 2a presents the percentages obtained by
DIT growth, DIT decrease, NOC growth, and NOC decrease. Table 4
details Figure 2a by presenting a descriptive analysis of the data.
Following, we discuss the results regarding the growth and the
decrease of the inheritance hierarchy separately.

This research question aims to identify the percentages of classes
existing in the systems that directly affect the growth or decrease
of the inheritance hierarchy and class size. We performed the trend
analysis considering the time series from the systems’ classes re-
garding the metrics. Besides, we computed the percentages of types
responsible for increasing and decreasing these metrics values and
summarized them in Figures 2a and 2b.

Tables 4 and 5 show the class percentages that interfere in the
growth and decrease of the inheritance hierarchy and size. We
discuss the results obtained in the sequel.

4.2.1 Classes Responsible for Growth. Figure 2a and Table 4 show
that a tiny percentage of classes in the systems contribute to DIT
and NOC growth. The median percentages of classes responsible
for “DIT growth” and “NOC growth” are 3.00% and 2.00%, respec-
tively. Themaximumpercentages are 21.00% and 8.00%, respectively.
Therefore, the results indicate that a small group of classes in a
system directly affects the inheritance tree’s growth, in-depth, and
breadth. Regarding DIT, which tends to increase over time, this
group represents no more than 21.00% of the system’s classes. For
NOC, which tends to decrease over time, this group is even less and
represents no more than 8.00% of the system’s classes. Moreover,
these values are outliers, as shown in the boxplot of Figure 2a.
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Figure 2: Distribution of classes that affects the dimensions growth and decrease.

Table 4: Descriptive analysis of the distribution of classes
that affects the inheritance hierarchy growth and decrease.

Event/Percentile 0% 25% 50% 75% 100%
DIT Growth 0.00 3.00 3.00 4.00 21.00
NOC Growth 1.00 2.00 2.00 2.75 8.00
DIT Decrease 0.00 0.00 1.00 1.00 17.00
NOC Decrease 0.00 0.00 0.00 1.00 2.00

Table 5: Descriptive analysis of the distribution of classes that
affects size growth and decrease.

Event 0% 25% 50% 75% 100%
NOA Growth 7.00 9.00 12.50 19.25 27.00
NOM Growth 11.00 15.25 16.50 26.50 37.00
NOA Decrease 2.00 3.00 5.00 7.00 7.00
NOM Decrease 2.00 3.00 5.00 5.75 7.00

Figure 2b and Table 5 show that the median of the class percent-
age responsible for “NOA growth” and “NOM growth” is 12.50%
and 16.50%, respectively. The maximum percentages indicate that
27.00% and 37.00% of the systems’ classes contribute directly to
increase NOA and NOM. These results show that just a small group
of classes in a system have their number of attributes and methods
increased over time. The classes with increasing NOM correspond
to no more than 37% of the system. This group is even smaller, with
no more than 27% of the systems’ classes regarding NOA.

4.2.2 Classes Responsible for Decrease. Analyzing the decrease of
DIT and NOC in Figure 2a and Table 4, we note that a small per-
centage of classes within a system directly influence these metrics
to decrease over time. The median of the portion of classes within
the systems with a decreasing DIT is 1.00%. For NOC, 50% of the
analyzed systems do not present classes with decreasing trends.
Besides, the maximum percentages for “DIT decrease” and “NOC
decrease” are 17.00% and 2.00%, respectively.

These results show that just a tiny group of classes directly de-
creases their depth and breadth inheritance tree. As we identified
that DIT tends to increase over time, we expected that the percent-
age of classes decreasing DIT would be less than the percentage
of classes with increasing DIT patterns. In contrast, NOC has a
decreasing trend, but the percentage of classes with a decreasing
NOC in a system is less than that with a growing NOC. The possible
explanation is: (1) if the number of classes in the system has not
grown, decrease in NOC values of the classes within the system is
more intense than the increase; (2) if the number of classes in the
system has grown, most of the new classes will not have children.

As the number of classes increases, the second hypothesis is more
likely.

Figure 2b and Table 5 show that the median of the class per-
centages responsible for “NOA decreases” and “NOM decreases”
is 5.00%, and the maximum percentage is 7.00% for both. These
results show that a tiny group of classes within the systems, cor-
responding to no more than 7.00%, directly contributes to these
metrics decreasing over time. Although the class groups responsible
for the growth and decrease of these metrics are small, the high
discrepancy between them is one reason for the growth trend in
these metrics.

4.2.3 Growth versus Decrease. In this part of our study, we ana-
lyzed the intersection of trend results about the same dimension
metrics to identify the percentage of classes. Regarding inheritance
hierarchy, we analyzed the following behaviors: (i) both DIT and
NOC grow, (ii) both DIT and NOC decrease, (iii) DIT grows and
NOC decreases, and (iv) DIT decreases and NOC grows. In the case
of size, we analyzed the following behaviors: (i) both NOA and
NOM grow, (ii) both NOA and NOM decrease, (iii) NOA grows and
NOM decreases, and (iv) NOA decreases and NOM grows. We inves-
tigated these behaviors from the perspective of system and trend
classes. Tables 6 and 7 summarize the results obtained for these
cases considering these two perspectives. Initially, we analyzed the
behaviors considering the systems as a whole and computed the
percentages by dividing the number of intersections by the total
number of classes existing in the systems. After that, we analyzed
the behaviors considering only trend classes and computed per-
centages by dividing the number of intersections by the number of
classes presenting any trend.
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Table 6: Intersection results for inheritance hierarchy.

System System Perspective Trend Class Perspective
i ii iii iv i ii iii iv

Eclipse JDT Core 1% 0% 0% 3% 3% 1% 1% 15%
Eclipse PDE UI 0% 0% 0% 0% 4% 0% 0% 5%
Equinox Framework 0% 0% 0% 0% 0% 0% 0% 0%
Hibernate Core 0% 0% 0% 0% 0% 0% 0% 3%
JabRef 0% 0% 0% 0% 0% 0% 0% 0%
Lucene 0% 0% 0% 0% 4% 0% 0% 0%
Pentaho Console 0% 0% 0% 0% 0% 0% 0% 0%
PMD 0% 0% 0% 0% 1% 0% 0% 0%
Spring Framework 1% 0% 0% 0% 6% 0% 1% 0%
TV-Browser 0% 0% 0% 0% 0% 0% 1% 0%

Table 7: Intersection results for class size.

System System Perspective Trend Class Perspective
i ii iii iv i ii iii iv

Eclipse JDT Core 22% 2% 1% 3% 43% 5% 2% 5%
Eclipse PDE UI 7% 3% 1% 2% 28% 11% 2% 7%
Equinox Framework 11% 1% 1% 0% 38% 4% 3% 2%
Hibernate Core 7% 1% 0% 0% 35% 6% 2% 1%
JabRef 10% 1% 0% 1% 39% 4% 2% 6%
Lucene 7% 1% 0% 1% 31% 3% 1% 3%
Pentaho Console 5% 1% 0% 1% 24% 6% 1% 4%
PMD 7% 1% 1% 0% 33% 5% 3% 1%
Spring Framework 18% 4% 1% 1% 42% 9% 1% 3%
TV-Browser 16% 3% 1% 1% 40% 9% 2% 3%

Observing the “System Perspective” results in Table 6, we do not
identify high percentages for these cases. In cases (ii) and (iii), the
percentages of classes are so small that they did not even represent
1% of the classes within the systems. In cases (i) and (iv), although
some systems had values greater than 0, most have a minimal
percentage of classes. Analyzing the “Trend Class Perspective” in
Table 6, we observe that the percentages are too small. Despite
some exceptions, such as Case (iv) in Eclipse JDT CORE and Case
(i) in Spring Framework, the other cases did not present relevant
percentages. These results bring pieces of evidence that DIT and
NOC of a class evolve separately over the software life cycle and
do not tend to follow a combined pattern or establish any relation
over the software evolution.

As shown by the “System Perspective” in Table 7, cases (iii) and
(iv) are too rare, and their maximum percentages in the analysis are
1% and 3%, respectively. Case (i) has the highest chance of occurring
since its maximum percentage corresponds to 22% of the total
systems’ classes. In Case (ii), the maximum percentage is 4%. On the
other hand, observing the results in “Trend Perspective” in Table 7,
we identify high percentages of Case (i), which vary from ≈ 25%
to ≈ 45%. These percentages had a significant increase compared
to percentages of the system perspective. We also identified very
low percentages for cases (ii) and (iv) similar to what happens in
the system perspective. Such values show that these cases tend not
to occur frequently during the software evolution. Therefore, the
results suggest evidence of the relation between NOA and NOM
over the software evolution. This evidence indicates that these
software metrics grow together and follow a combined pattern over
evolution.

Summary of RQ2. The evolution of depth and breadth from
inheritance trees are directly affected by a small set of classes, and
the DIT and NOC do not follow a related pattern over the evolution.
A small but not irrelevant percentage of classes in a system has
the attributes and methods increased over time in size. Decreasing
methods or attributes are rare events. Analyzing the systems as
a whole, on average, just ≈ 10% of the classes in a system have
methods and attributes growing together. However, considering
only trend classes, NOA and NOM grow together.

5 EVOLUTION PROPERTIES
This section compiles our results in eight software evolution prop-
erties related to inheritance hierarchy and size.

1st - Inheritance hierarchy tends to increase in depth and
decrease in breadth over time. Our analysis indicates that the
average of DIT (depth) of classes tends to increase. In contrast, the
average of NOC (breadth) tends to decrease.

2nd - Inheritance hierarchy depth grows according to a lin-
ear model. An inheritance tree with many levels may introduce
complexity in the system structure and make it hard to understand
and maintain. The higher number of superclasses a class has, the
more difficult it is to understand its objects’ behavior. Due to this,
Gamma et al. [19] define the principle “favor composition over in-
heritance” that recommends implementing reusable software using
class composition rather than class inheritance.

3rd - Inheritance hierarchy breadth decreases according to
a quadratic model. A quadratic function better models the global
behavior of the breadth evolution in the inheritance hierarchy.
Decreasing the mean number of children in a system may be due
to two possible reasons: the new classes added to the system do
not have children classes in general, or the inheritance trees are
refactored over time.

4th - A small part of the system influences the growth and
the decrease of the inheritance hierarchy. Regarding depth, no
more than 21.00% of the system’s classes have their DIT increased,
and no more than 17.00% have their DIT decreased. No more than
8.00% and 2.00% of the systems’ classes have their NOC increased or
decreased regarding breadth. Although inheritance may introduce
complexity in the system, it will occur with a small portion of the
system.

5th - There is no association between the depth and the
breadth of a class. A small percentage of classes within the sys-
tems presented an association between depth and breadth in growth
and decrease. This finding shows that the number of children and
the number of superclasses of a class evolve independently and do
not follow a combined pattern.

6th - The size of classes grows according to the linearmodel.
A linear function better models the evolution pattern of both the
number of attributes and the number of methods of classes within
the systems. Our results indicate how such growths occur in the
structure of classes.

7th - A small group of classes affects the growth of system
size. No more than 27.00% of the systems’ classes increase the
number of attributes, and no more than 37.00% increase the number
of methods. Rarely, a class has its size decreased. In our study, 7.00%
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is the higher percentage of classes with such behavior. Although
the percentage of types having attributes or methods added to them
is not very high, it is still relevant. Apart from refactoring, a class
swelling means that more services were introduced in the class,
and this may lead to non-focused and more complex classes and,
therefore, to a more complex software structure.

8th - The evolution of the number of attributes and the
number of methods are correlated. Our results suggest a posi-
tive correlation betweenNOA andNOMevolution regarding growth
and decrease. Such a finding means that methods are also included
when we include attributes in a class or vice-versa. When removing
attributes, methods are also removed. This finding details the way
a class grows or decreases.

6 THREATS TO VALIDITY
This section presents the threats to this work’s validity and dis-
cusses the major decision we made to mitigate them.

We used statistical trend tests to identify classes that affect the
software metrics’ growth and decrease. However, statistical tests
may represent a threat to validity since they may be prone to errors
if not correctly applied. To mitigate this threat, besides choosing
relevant and useful trend tests, we defined trend criteria that con-
sider the results of all of them to point to the presence of trend in
time series.

We analyzed the evolution of inheritance hierarchy and size
in open-source Java systems. We considered a dataset composed
of 10 different systems. Although our dataset has an appropriate
amount of data and reflects the evolution of Java systems, we can
not claim generalization of the results to other domains and contexts
of development, such as proprietary software and systems written
in any language other than Java.

We disregarded time series with “ghost” classes, i.e., classes with
broken intervals, from our trend analysis. Removing “ghost” classes
may be considered a threat to validity since they may contain in-
formation about the system. To mitigate this threat, we evaluated
them separately to check if they do have relevant information. Af-
ter assessing them, we concluded that they made up a tiny part
of the systems and did not have significant trend patterns. There-
fore, disregarding “ghost” classes would not introduce bias in our
analysis.

We used linear regression techniques to model the pattern of
our analyzed time series. Although regression techniques have
been widely used to do this task [1, 4, 22, 30, 31, 45, 46, 48], the
presence of interventions or autocorrelation in the time series may
bias the generated models. To avoid this problem, after generating
the models via regression techniques, we carried out intervention
and residual analyses to incorporate the autocorrelation and ensure
that the models have a reasonable adjustment.

7 RELATEDWORK
Meyer [41] studied the use of inheritance mechanisms in object-
oriented software and proposed amethodology to use it. Hismethod-
ology documents 12 different forms to use inheritance and discusses
the scenarios where each one must be applied. Some works ana-
lyzed the impact of depth of inheritance on maintenance [9, 13, 24].
However, while Daly et al. [13] found that inheritance hierarchy

harms maintenance, Cartwright [9] identified a positive impact.
Harrison et al. [24] compared systems with inheritance and sys-
tems without inheritance to measure this impact. They concluded
that inheritance might make the systems harder to modify and
affect their understandability. Tempero et al. [50] indicated that
developers have often used inheritance in Java programs to define
types. According to them, ≈ 75% of the types in Java systems are
defined via inheritance. However, the types are usually defined
at the first levels of the inheritance tree and do not have many
children. Nasseri et al. [44] confirmed the finding of [50] about
inheritance hierarchy be shallow in Java systems and indicate that
the classes have a strong tendency to be added at levels 1 and 2
of the tree. They also pointed that the inheritance hierarchy tends
to grow breadth-wise instead of depth-wise in open-source Java
systems.

The literature has tried to characterize how the systems evolve in
size, but it has drawn different conclusions. For instance, while some
works have indicated that the size tends to increase super-linearly
[20, 21, 27, 32], others have pointed that size grows sub-linearly
[5, 8, 28], linearly [47], or following the Pareto distribution [26].
Besides, Capiluppi and collaborators [6, 7] observed that the size
of the software systems increases over. It evolves similarly from
three different aspects: size in KB, lines of code, and the number
of files. Finally, Hatton et al. [25] aimed to quantify the growth
rate of source code over time. They concluded that the open-source
systems tend to double the average rate of produced source code
every 42 months.

This paper presents an empirical study on the evolution inheri-
tance hierarchy and size. It differs from the related works discussed
here because we describe how the inheritance hierarchy evolves.
None of the previous work described this evolution. The previous
works have analyzed the evolution of size from other perspectives,
e.g., number of files, number of classes, and number of lines of code.
In the present work, we analyze the evolution of the size dimension
from the perspective of data and features within classes.

8 CONCLUSION
This paper presents an empirical study on the evolution of the
inheritance hierarchy and size in object-oriented systems. We in-
vestigated: (i) how these dimensions evolve and how their behavior
pattern may be described, and (ii) the systems’ portion that directly
contributes to these dimensions evolving.

We used a software evolution dataset composed of software
metrics time series regarding ten open-source Java systems. We
used DIT and NOC to characterize the inheritance hierarchy and
NOA and NOM to measure size. Our methodology considered linear
regression and trend tests to model the global time series of the
systems and identify the classes that tend to grow or decrease in
terms of the investigated dimensions.

From the results of this study, we identified eight properties
of software evolution in terms of class size and inheritance that
bring new insights into how the internal structure of object-oriented
software systems evolve. They are: (i) inheritance hierarchy tends to
increase in depth and decrease in breadth over time; (ii) inheritance
hierarchy depth grows according to a linear model; (iii) inheritance
hierarchy breadth decreases according to a quadratic model; (iv) a
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small part of the system influences the evolution of the inheritance
hierarchy; (v) depth and breadth evolution are not associated; (vi)
size of classes grows according to a linear model; (vii) a small group
of classes affects the evolution of system size; (viii) the evolution of
NOA and NOM are associated. The software evolution properties
we identified may serve as a background predicting models to track
these dimensions evolution and techniques to improve and control
how these properties evolve.

As future work, it is essential to (i) build prediction models about
inheritance and class size; (ii) investigate the evolution of other
internal characteristics of software systems; and (iii) replicate these
analyses for software systems developed in other contexts, e.g.,
proprietary systems, and different programming languages, e.g.,
C++ and C#.
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