
XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 396

Evaluating Co-Occurrence of GOF Design Patterns with
God Class and Long Method Bad Smells

Bruno L. Sousa
UFMG - ICEx

Department of Computing
Belo Horizonte, MG - Brazil

bruno.luan.sousa@dcc.ufmg.br

Mariza A. S. Bigonha
UFMG - ICEx

Department of Computing
Belo Horizonte, MG - Brazil

mariza@dcc.ufmg.br

Kecia A. M. Ferreira
CEFET-MG

Department of Computing
Belo Horizonte, MG - Brazil
kecia@decom.cefetmg.br

ABSTRACT
Design patterns are general reusable solutions to common
recurring problems in software projects. These solutions,
when correctly applied, are supposed to enhance modular
and flexible structures in software. The aim of this work is
to study the occurrences of God Class and Long Method bad
smells in software systems developed with design patterns.
To achieve this aim, we carried out a study with five Java
project, in order to: (i) investigate if the use of GOF design
patterns avoid the occurrences of the bad smells God Class
and Long Method, (ii) identify co-occurrences of the GOF
design patterns with these bad smells, and (iii) identify the
main situations that lead software systems to present these
co-occurrences. The results obtained suggest that Compos-
ite and Factory Method have a low co-occurrence with these
bad smells, and Template Method and Observer have a high
co-occurrence with God Class and Long Method, respec-
tively. In addition, we have identified that the misuse of de-
sign patterns and the scattering and crosscutting concerns
has contributed to the emergence of such co-occurrences.

CCS Concepts
•General and reference ! Measurement; •Software

and its engineering ! Design patterns; •Social and

professional topics ! Quality assurance;

Keywords
Design Patterns, Bad Smells, Software Metrics, Thresholds.

1. INTRODUCTION
Design pattern is a general solution to a recurring prob-

lem in a given context in the software design [9]. Its main
goal is to create flexible and extensible software systems,
with a reusable structure and easy maintenance. They are
recognized as good programming practice, which, when ap-
plied correctly, may help reducing bad smells in software,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

SBSI 2017 June 5th – 8th, 2017, Lavras, Minas Gerais, Brazil
Copyright SBC 2017.

although they have not been proposed for this purpose [15].
Bad smells, according to Fowler and Beck [8], are symp-

toms presented in the source code of a program that possibly
indicate a more serious problem that requires code refactor-
ing [8]. Regions of code that exhibit these symptoms are
not considered errors, but they impair software quality and
violate Software Engineering principles such as modularity,
readability and reuse. Design patterns may be used to re-
move bad smells. On the other hand, there are studies that
identify co-occurrence of design patterns and bad smells [3,
10, 11, 18]. Although design patterns are intended to im-
prove software quality, they do not necessarily avoid bad
smells.

The goal of this work is to investigate object-oriented
projects that apply the design patterns defined by Gamma
et al. (GOF catalog) [9], and, using a methodology based
on extraction of metrics, answer the research questions:

• RQ1: Do the design patterns defined in the GOF
catalog avoid the occurrence of God Class and Long
Method bad smells in software?

• RQ2: Which design patterns of GOF catalog pre-
sented co-occurrence with the God Class and Long
Method bad smells?

• RQ3: What are the more common situations in which
the God Class and Long Method bad smells appear in
software systems that apply GOF design patterns?

In order to answer these research questions, a case study
with eleven of the twenty-three design patterns described
by Gamma et al. [9] and five Java based software systems
from the Qualitas.class Corpus [16] was carried out. These
software systems make use of design patterns.

The main finding of this work is that design patterns,
when implemented without considering good programming
practices, may generate situations that lead to the presence
of bad smells. These situations need to be identified, so
that, the software may be refactored in order to eliminate
the problematic structures.

2. RESEARCH METHODOLOGY
This study was carried out in 5 steps: (i) identification of

bad smells detection strategies, (ii) definition of the data set
that comprises the software systems considered in the study,
(iii) data collection, (iv) application of the association rules
and (v) method of the data analysis.

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 397

 2.1 Identification of Bad Smells Detection
Strategies

According to Marinescu [13], detection strategy is a quan-
tifiable expression of a rule that evaluates if fragments of a
source code have properties of a given bad smell. In addi-
tion to detection strategies, software metric thresholds can
be used to determinate the relationship of a metric with a
bad smell and, thus, identify anomalous entities.

In this study, we consider the God Class and Long Method
bad smells. Lanza and Marinescu [12] describe God Class
as a class that executes too much work and delegate mi-
nor details to other classes. Fowler and Beck [8] describe
the Long Method bad smell as a method that performs too
much work, having many lines, temporary variables and pa-
rameters. We choose these bad smells because they are espe-
cially problematic to the software maintenance and they are
related to a large amount of information that may turn the
software comprehension hard and increase coupling among
the methods and among the classes of the system.

The detection strategies used in this study were proposed
by Filó et al. [7]. We choose these strategies because they
are composed of well known software metrics. Besides that,
they were previously evaluated by Filó [5], and no false neg-
ative was returned. False positive may be returned, but with
a low probability of occurrence. These results suggest that
these detection strategies are e↵ective in bad smells detec-
tion. The thresholds defined by Filó et al. [7] for a software
metric is classified in three ranges: Good, Regular, and Bad.
The experiments done by the authors indicate that the Good
range is related to low occurrences of bad smells. Therefore,
the detection strategies rely on the Regular and Bad ranges
of the metric values. Following, we describe the detection
strategies of Filó et al. [7] for God Class and Long Method.

The detection strategy of bad smell God Class, Figure 1,
uses the metrics Weighted Methods per Class (WMC), Num-
ber of Methods (NOM), Number of Attributes (NOF), and
Lack of Cohesion of Methods (LCOM).

The detection strategies for the Long Method bad smell,
Figure 2, uses the metrics Method Lines of Code (MLOC),
Nested Block Depth (NBD) and McCabe Cyclomatic Com-
plexity (VG).

Figure 1: Detection strategy for God Class ex-

tracted from [7].

2.2 Data Set
The software sample used in this study are from Quali-

tas.class Corpus [16], a data set which comprises software
metrics of 112 open source software systems developed in

Figure 2: Detection strategy for Long Method ex-

tracted from [7].

Java. Qualitas.class Corpus provides 23 software metrics
and the bytecodes of the software systems. This data set
was chosen because it has a large collection of open source
projects developed in Java that are widely used in empirical
studies of software artifacts.

As this study involves manual inspection, we considered a
sample of five software systems: Hibernate 4.2.0, JHotDraw
7.5.1, Kolmafia 17.3, Webmail 0.7.10 and Weka 3.6.9. All
of them, except Kolmafia, are from Qualitas Corpus. The
main criteria for the selection of these project was based
in two points, they use design patterns from GOF catalog
and they present the bad smells considered in this work. It
was decided to include Kolmafia 17.3 in this sample because
previous studies to point out values of metrics considered
problematic in this software system [4], however, without
any correlation of these values with bad smell or design pat-
terns.

2.3 Data Collection
The third step involved the collection of the data analyzed

in this work. Qualitas.class Corpus comprises files in XML
format with the software metrics of the software systems. As
most of the software used in this work are from Qualitas.class
Corpus, these files were used. Since Kolmafia 17.3 data are
not in this corpus, its code was downloaded and its metrics
was collected. The tools Eclipse 4.2 Juno IDE1 and Metrics
1.3.6 plugin2 were used for this purpose. The metrics of
Kolmafia 17.3 were exported to XML file.

To verify the existence of design patterns in the software, a
tool proposed by Tsantsalis et al. [17], called Design Pattern
Detection using Similarity Scoring 4 (DPDSS), was used.
According to the authors, this tool models all aspects of de-
sign patterns by means of directed graphs, represented by
quadratic matrices, and applies an algorithm called Similar-
ity Scoring. This algorithm receives as input the system and
the graph of the design pattern, and then, calculates the sim-
ilarity scores between the vertices of the graph. According
to Tsantsalis et al. [17], the main advantage of this approach
is the ability to detect not only the patterns in their base
form, which is normally found in the literature, but also the
modified versions of it. We previously tested DPDSS with
three systems: JHotDraw 5.1, JRefactory 2.6.24 and JUnit
3.7, and no false positive occurrence of design patterns was
returned. False negatives were returned only for two design
patterns: Factory Method and State. The results presented
by this tool were very satisfactory, showing that it is e↵ective

1http://www.eclipse.org/downloads/packages/release/
Juno/SR2
2http://metrics.sourceforge.net

http://www.eclipse.org/downloads/packages/release/Juno/SR2
http://www.eclipse.org/downloads/packages/release/Juno/SR2
http://metrics.sourceforge.net

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 398

 in identifying instances of design patterns.
Filó et al. [6] developed a tool, RAFTool, which per-

forms the identification of methods, classes and packages
with anomalous measurements of object oriented software
metrics. RAFTool was used with the purpose of implement-
ing detection strategies. The tool receives as entry the XML
of the target system, with its software metrics, and a detec-
tion strategy that is described by a logical expression in a
given format. The tool reports the classes or the methods
whose metric values fit to the detection strategy.

In RAFTool, the metrics’ thresholds that comprise the de-
tection strategy are represented by the following keywords:
COMMON, which corresponds to the Good/Frequent ranges
of the metrics, CASUAL, which corresponds to the REGU-
LAR/OCCASIONAL ranges of the metrics, and UNCOM-
MON, which corresponds the Bad/Rare ranges of the met-
rics. The logical expression of God Class and Long Method
are defined as follows.

Exp1 (UNCOMMON[WMC] OR CASUAL[WMC]) AND (
UNCOMMON[NOF] OR CASUAL[NOF]) AND (UN-
COMMON[NOM] OR CASUAL[NOM]) AND (UNCOM-
MON[LCOM] OR CASUAL[LCOM])

Exp2 (UNCOMMON[MLOC] OR CASUAL[MLOC]) AND (
UNCOMMON[NBD] OR CASUAL[NBD]) AND (UN-
COMMON[VG] OR CASUAL[VG])

Instances of design patterns returned by DPDSS can be
composed of one or more classes or methods. An example
of this is the instance returned to the Bridge design pat-
tern that has a class responsible for representing the im-
plementation part and a class responsible for representing
the abstraction part. To solve this problem, we developed
the Design Pattern Smell 3 [14] to count the classes and the
methods in the instances of a design pattern, as well as to
identify the artifacts, classes or methods, that have a given
design pattern and a given bad smell. This tool receives as
entry (1) the files in the XML format exported by DPDSS,
containing the instances of design patterns of a software sys-
tem, and (2) the CSV files generated by RafTool, containing
the artifacts with a given bad smell.

2.4 Application of Association Rules
To identify the co-occurrences of bad smells and design

patterns we applied association rules, based on concepts
of data mining [1, 2]. We decided to use the association
rules because they combine items from a data set to extract
knowledge about the data. Moreover, previous works in the
same context of this one [3, 18] have applied association
rules.

To apply the association rules, three metrics are used:
Support [1], Confidence [1], and Conviction [2]. These met-
rics are based in the following main concepts: Transaction,
defined as a set of items; Antecedent that is an item that ap-
pears on the left side of the association rule; and Consequent,
an item that appears on the right side of the association rule.
Therefore, a basic association rule has the following form:
Antecedent) Consequent.

Support (sup) of an association rule corresponds to the
frequency that an item occurs in a transaction (Equation 1).

3http://www2.dcc.ufmg.br/laboratorios/llp/Products/
indexProducts.html

For instance, let us consider a shopping base in a supermar-
ket. Suppose that there is a data set with 1,000 transac-
tions, which are the set of items that were purchased. In
this data set, the items pasta and tomato appear together
in 100 records. So, Support for this relationship is 0.1, i.e.,
10.0%.

sup(X) Y) = P (X,Y) (1)

Confidence (conf) expresses the probability of a Conse-
quent occurs since Antecedent has occurred (Equation 2).

conf(X) Y) =
sup(X) Y)

sup(X)
(2)

In the aforementioned example, let us consider that the
item pasta is found alone in 200 of 1,000 transactions of
the data set. To compute the Confidence of the association
rule pasta) tomato, it is necessary to divide the Support
of this rule, 0.1, by the Support of pasta – Antecedent in
the association rule –, 0.2, resulting in a confidence of 0.5,
i.e., 50.0%. Confidence is very sensitive to the frequency on
the right side of the association rule, i.e., a very high value
in the right side of the association rule can generate a high
confidence value, even if the items do not have any type of
relation.

To solve this problem of Confidence, Brin et al. [2] pro-
posed the metric Conviction. This metric uses the Support
in both the Antecedent and the Consequent (Equation 3).

conv(X) Y) =
sup(X) ⇤ (1� sup(Y))
sup(X)� sup(X) Y)

(3)

In the given example, let us consider that the item tomato

is found alone in 300 of 1,000 transactions of the data set.
Thus, the support tomato, sup(tomato) is 0.3 and the con-
fidence conf(pasta) tomato) is 0.5. Applying these values
in the Equation 3, the Conviction conv(pasta) tomato) is
1.4. When the value of Conviction is 1.0, it indicates that
the antecedent and the consequent have no relation at all.
When the value of Conviction value is less than 1.0, it indi-
cates that if the antecedent occurs, the consequent tends to
not occur. When the value of the Conviction is greater than
1.0, it means that the antecedent and the consequent have
relation; the greater the value of Conviction, the greater the
relation between the antecedent and the consequent. An in-
finite result indicates that the antecedent never appears in
the transactions.

In this work, for the application of the association rules,
a transaction represents each class in the analyzed system;
antecedent represents a design pattern; consequent repre-
sents a bad smell, in particular, the bad smells God Class
and Long Method.

2.5 Method of the Data Analysis
Figure 3 illustrates, via diagram, the method used to an-

alyze the data obtained in the study.
This step is made in 5 parts. Initially, we identify the

design patterns in the software systems. In order to identify
them, the tool DPDSS was used and the results obtained
were stored in a table.

The second part aims to identify classes and methods that
have the God Class or Long Method bad smells. To find
such methods and classes, we applied the logical expressions

http://www2.dcc.ufmg.br/laboratorios/llp/Products/indexProducts.html
http://www2.dcc.ufmg.br/laboratorios/llp/Products/indexProducts.html

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 399

Figure 3: Method of the data analysis.

Exp1 and Exp2 in RAFTool. Once the design patterns and
the God Class and Long Method bad smells were identified
in the software projects, in the sequel, the pre-processing
of these data was performed by running the Design Pattern
Smell tool. In the third part, we apply the association rules
on the data resulting from the pre-processing, and then, we
identify the co-occurrences existing in the software systems.
In the fourth part, we manually inspected the classes with
co-occurrence, in order to identify the situations that favored
the presence of this relation in such classes. In the fifth
part, the data were analyzed in order to answer the research
questions of this work.

3. RESULTS
This section presents the results followed by the discussion

of the presented study, as well as the answers to the proposed
research questions.

Tables 1 and 2 show the amount of classes and methods
of the software systems with the bad smells God Class and
Long Method, respectively. All systems, in some level, pre-
sented these bad smells.

Software
Classes with

God Class
Classes

% Classes with
God Class

Hibernate 527 7,711 6.83%
JHotDraw 122 1,061 11.50%
Kolmafia 385 3,225 11.94%
Webmail 15 129 11.63%
Weka 467 2,401 19.45%

Table 1: Amount of classes with God Class.

Software
Methods with
Long Method

Methods
% Methods with
Long Method

Hibernate 2,883 48,234 5.98%
JhotDraw 995 7,633 13.04%
Kolmafia 5,400 2,8078 19.23%
Webmail 131 1,091 12.01%
Weka 3,822 20,871 18.31%

Table 2: Amount of methods with Long Method.

Tables 3 and 4 show the results after pre-processing the
data. In both tables, the “T” column indicates the total
number of classes or method that uses a design pattern, and
the “DP&BS” column indicates the number of classes that
have instances of some design pattern (DP) and occurrence
of the respective bad smell (BS).

After pre-processing the data, the application of the asso-
ciation rule is performed, in order to identify the co-occur-
rences. For this purpose, the metrics described in Section 2.4
were calculated using the results of Tables 1, 2, 3, and 4. We
used the result of the Conviction metric following the thresh-
olds shown in Section 2.4. Figure 4 exhibits the results of the

Conviction metric for the God Class bad smell, considering
the association rule Design Pattern) God Class. Figure 5
shows the results of the same metric for Long Method bad
smell, according to the association rule Design Pattern)
Long Method.

Adapter−Command

Bridge

Composite

Decorator

Factory Method

Observer

Prototype

Proxy

Singleton

State−Strategy

Template Method

Weka 3.6.9

Webmail 0.7.10

Kolmafia 17.3

Jhotdraw 7.5.1

Hibernate 4.2.0

Relationship between GOF Design Pattern and God Class

conviction

0 1 2 3 4

de
sig

n
pa

tte
rn

s

Figure 4: Results of the association rule Design Pat-

tern) God Class.

3.1 Analysis of the Results
The classes with the God Class or Long Method bad smells

were inspected manually in order to answer the research
questions defined in this work.

RQ1. Do the design patterns defined in the GOF catalog
avoid the occurrence of God Class and Long Method
bad smells in software?

The results reported in Table 3 indicate that two design
patterns have a low occurrence of God Class: Composite
and Factory Method. The manual inspection reveals that
they have a modular structure that divides the tasks be-
tween several classes. The idea of the Composite pattern is
to construct complex objects by means of simpler objects.
These simpler objects are defined in modules, in such a way
intelligence is divided between them, reducing the complex-
ity of the classes. The Factory Method pattern simulates
the idea of a factory in which there is an interface to create
objects, but the creation of the object itself occurs in the
class that implements that interface. Thus, it is possible
to create several modules, each one responsible for creating

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 400

Design Pattern

Hibernate

4.2.0

JHotDraw

7.5.1

Kolmafia

17.3

Webmail

0.7.10

Weka

3.6.9

T DP&BS T DP&BS T DP&BS T DP&BS T DP&BS
Adapter-Command 228 39 53 19 386 81 40 7 152 68
Bridge 56 16 40 9 14 5 6 3 0 0
Composite 12 0 12 4 8 0 0 0 0 0
Decorator 37 3 10 2 67 7 0 0 32 17
Factory Method 37 3 5 0 31 3 2 0 22 3
Observer 4 2 2 1 8 1 0 0 36 12
Prototype 0 0 21 9 0 0 0 0 0 0
Proxy 8 2 0 0 18 9 0 0 35 18
Singleton 232 3 13 1 77 9 1 1 34 5
State-Strategy 271 47 121 43 334 64 23 3 93 45
Template Method 87 27 16 7 54 13 4 3 22 9

Table 3: Amount of classes that comprise each design pattern and amount of classes that contain both design

pattern and the bad smell God Class.

Design Pattern
Hibernate

4.2.0

JHotDraw

7.5.1

Kolmafia

17.3

Webmail

0.7.10

Weka

3.6.9

T DP&BS T DP&BS T DP&BS T DP&BS T DP&BS
Adapter-Command 271 52 73 19 703 123 50 5 222 71
Bridge 61 13 51 11 19 3 8 2 0 0
Composite 8 0 29 0 37 0 0 0 0 0
Decorator 115 2 31 1 255 12 0 0 61 25
Factory Method 58 0 23 0 45 0 2 0 27 0
Observer 8 3 2 1 7 3 0 0 24 4
Prototype 0 0 16 6 0 0 0 0 0 0
Proxy 6 1 0 0 31 9 0 0 37 12
Singleton 340 0 15 0 672 0 1 0 83 0
State-Strategy 343 121 227 90 974 154 19 0 173 97
Template Method 275 90 47 13 161 48 14 3 34 16

Table 4: Amount of methods that comprise each design pattern and amount of methods that contain both

design pattern and the bad smell Long Method.

and managing the information of a set of objects in the sys-
tem, removing the workload from a single class. Therefore,
both Composite and Factory Method are design patterns
intrinsically modular.

A similar behavior is observed for the Long Method bad
smell, as shown in Table 4. Most design patterns present a
high amount of occurrences of Long Method, except Com-
posite and Factory Method, which present just a few occur-
rences of this bad smell.

The Singleton design pattern is a special case. Although
its instances do not have the Long Method bad smell, it
seems a false negative case. Singleton was indicated as false
negative because the instances of this design pattern iden-
tified by DPDSS are based only on the static attribute pre-
sented in the class. It does not consider methods as char-
acteristic of this design pattern. For this reason, when this
design pattern was intersected with methods that had bad
smells, it returned 0. However, when classes containing Sin-
gleton were inspected, we identified methods with the Long
Method bad smell inside them.

Although Factory Method and Composite design patterns
present few co-occurrences with the God Class and Long
Method bad smells, the general conclusion of this analysis
is that most of the design patterns studied in this work are
associated with this two bad smells. Therefore, the answer

of RQ1 is “No, design patterns GOF not necessarily avoid
occurrences of the God Class and Long Method bad smells.”

RQ2. Which design patterns of GOF catalog presented co-
occurrence with the God Class and Long Method bad
smells?

In order to analyze the associations between design pat-
terns and bad smells, we considered the values of Conviction.
The choice of this metric is due to the fact that Conviction is
able to establish a relationship between Support and Confi-
dence metrics. Moreover, Conviction has a better sensitivity
to the direction between the antecedent and the consequent.
In order to define which co-occurrences of design patterns
and bad smells have the highest relation, the thresholds of
the Conviction, mentioned in Section 2.4, were considered.

The chart in Figure 4 indicates a strong relationship of
several design patterns with the bad smell God Class. The
design patterns with the highest Conviction values are: Tem-
plate Method, Observer, and Proxy. We also observed that
the results for those design patterns in four systems are very
close: Hibernate 4.2.0, JHotdraw 7.5.1, Kolmafia 17.3, and
Weka 3.6 .9. In Webmail 0.7.10, the association rule Tem-
plate Method) God Class prevailed over the others, show-
ing that the Template Method was the design pattern that
presented more co-occurrences with God Class. These re-
sults, then, indicate that Template Method, Observer, and

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 401

Adapter−Command

Bridge

Composite

Decorator

Factory Method

Observer

Prototype

Proxy

Singleton

State−Strategy

Template Method

Weka 3.6.9

Webmail 0.7.10

Kolmafia 17.3

Jhotdraw 7.5.1

Hibernate 4.2.0

Relationship between GOF Design Pattern and Long Method

conviction

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

de
sig

n
pa

tte
rn

s

Figure 5: Results of the association rule Design Pat-

tern) Long Method.

Proxy presented more occurrences of the bad smell God
Class than the other design patterns.

Long Method has a similar behavior of God Class. The
chart in Figure 5 shows that many design patterns have
a strong relation with Long Method. Three design pat-
terns present a higher co-occurrence with Long Method: Ob-
server, State-Strategy, and Template Method. Conviction is
higher in 3 out of 5 systems: Hibernate 4.2.0, JHotDraw
7.5.1, and Kolmafia 17.3. The strongest association rule in
these systems is Observer) Long Method. Webmail 0.7.10
does not present any instance of Observer, therefore the as-
sociation rule Observer) Long Method was not found in
this project. In Weka 3.6.9, Observer) Long Method has a
low occurrence. In conclusion, the association rule Observer
) Long Method, despite having a low occurrence in two
cases, was the one that presented the strongest Conviction
in this study. Nevertheless, State-Strategy and Template
Method also present a high Conviction value. Then, the re-
sults indicate that Observer, State-Strategy, and Template
Method presented more occurrences of the Long Method bad
smell than the other design patterns.

So, answering RQ2, Template Method, Observer and Pro-
xy were identified as those who presented the main co-occur-
rences with the God Class bad smell with Template Method
have the highest co-occurrence with this bad smell. The
Observer, State-Strategy and Template Method design pat-
terns were identified as those that presented the main co-

occurrences with the Long Method bad smell. Neverthe-
less, Observer presented the highest co-occurrence with Long
Method.

RQ3. What are the more common situations in which the
God Class and Long Method bad smells appear in soft-
ware systems that apply GOF design patterns?

The results found in this study indicate that God Class
bad smell has more co-occurrences with the Template Me-
thod design pattern, and the Long Method bad smell has
more co-occurrences with the Observer design pattern. In
order to identify the causes of such co-occurrences, a man-
ual inspection was performed in the classes that present the
relations Template Method) God Class and Observer)
Long Method.

Template Method aims to define the skeleton of an algo-
rithm via an operation, transferring some steps to the sub-
classes, which have the power to redefine the characteristics
of the algorithm without changing the algorithm structure
[9]. That is, this pattern uses a modular structure, in which
the various behaviors of an object are modeled in the sub-
classes and assigned to the object via polymorphism. The
advantage of this implementation is the reduction of com-
plexity in the super class, since definitions via conditional
structures such as if, else, and switches are replaced by
polymorphism. However, using this pattern requires care-
ful attention to avoid assigning many responsibilities to the
templates and also to the super class.

The manual inspection in the classes that presented co-
occurrence of Template Method) God Class indicated that
a great amount of responsibilities were assigned to the classes
containing the template method. It was observed that the
templates methods refer to the definition of the behavior of
the object, implemented in the subclasses. In some classes,
the implementation of behavior has a high complexity. This
generates an overload of tasks in the templates methods,
contributing with the occurrence of Long Method in some
cases. In addition, a high number of dependencies has been
observed in super classes that implements a Template Me-
thod. Several objects are instantiated in such implementa-
tions, elevating the coupling of these classes, and small tasks
are passed on to them. In these classes there are an intense
amount of getter methods that make use of few attributes.

Based on this analysis, it is possible to identify some
reasons that contributed to the co-occurrence of Template
Method) God Class. The Template Method design pat-
tern allows the extension of classes and the addition of new
features. However, poor planning and misapplication of this
design pattern contributes to increase the amount of super-
class responsibilities, concentrating a large part of the intel-
ligence of the system in the super-class, generating its co-
occurrence with God Class bad smell. To eliminate these co-
occurrences, it is necessary to extract, from the overloaded
classes, methods and attributes, adding them to other classes,
in order to divide the amount of work and e↵ort performed
by the Template classes.

Observer is a solution that establishes a one-to-many de-
pendency between objects. Observer uses a structure where
the subject class has a list of all observers classes that use
its data. When some information is changed in the subject
by one of its observers, the subject is triggered by changing
the other observers. The aim of this design pattern is the
synchronization of data and the updating of objects in real

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 402

 time. This update occurs via polymorphism, avoiding the
increase of complexity that generally occurs with the use of
conditional structures. However, when using this design pat-
tern, it is important to implement the operation that notifies
the observers in the subject properly, since a poor planning
of this operation can result in complex methods.

The methods involved in the relation Observer) Long
Method, were manually inspected. It was noticed that the
methods implemented in the subject class, responsible for
notifying observers, perform a lot of work. Such methods
are big and complex, what make the code di�cult to read
and to understand. In some case, there is also scattering in
the code, involving log records and observer update, among
others, that influence the high complexity and the large size
of these methods.

The aforementioned analysis revealed some main situa-
tions that may lead to the presence of the Long Method
bad smell in methods implemented in Observer. The high
amount of code repetitions and responsibilities assigned to
the notifying observers methods are the main situation we
have found. Scattering and crosscutting concerns also have
appeared in the implementation of such methods. A con-
cern is a part of a problem that one needs to deal with in a
software system. The registration of the operation log is an
example of concern. When concerns are not modularized in
a program, it leads to scattering and to crosscutting concerns
in the code. In the methods implemented in Observer, we
have detected scattering and crosscutting concerns in sub-
ject classes, specially due to repetition of code that imple-
ments register of log, aiming to notify observers. To elimi-
nate such co-occurrences, it is necessary to eliminate these
code repetitions and to modularize them so that they are im-
plemented in a single entity and can be reused by other en-
tities. With respect to scattering and crosscutting concerns,
in object-oriented programming, these occurrences are di�-
cult to control. However, they can be mitigated through the
Singleton design pattern. Developers could create a Single-
ton class, responsible for managing log concern for example,
that would provide a specific method for logging, requesting
only the information that should be written.

In conclusion, the main reason of co-occurrences of God
Class bad smell with Template Method is the misuse of ob-
ject orientation, leading to concentration of responsibilities
in the classes that implements the Template Method. A sim-
ilar situation was also found in the case of the co-occurrences
of Long Method bad smell with Observer; in this case, the
misuse of object orientation leads to scattering and cross-
cutting concerns.

4. THREATS TO VALIDITY
In this section, we discuss the main threats to the valid-

ity of this work. We considered a sample composed of five
software systems in this study. We mainly analyzed systems
from a large data set, called Qualitas Corpus. The sample
has small, medium, and large systems. Nevertheless, due to
the small size of the sample, we are not able to generalize the
results found in this study. Even though, the results found
are still important because they show that the use of design
patterns not necessarily avoid bad smells in object oriented
software system.

Our data collection was carried out by tools. The identifi-
cation of design patterns was performed by DPDSS, and the
identification of bad smells by RAFTool. We are not able

to ensure that the results of those tools are totally right.
However, we chose tools already used in previous work.

To identify the main causes of the main co-occurrences of
design pattern and the bad smells identified in this study,
we performed a manual inspection in the classes and in the
methods involved in such co-occurrences. This inspection
was carried out by one of the authors of this work. Although
the inspector has high level of knowledge of all the concepts
involved in the analysis, the manual inspection might be
error-prone. To overcome this threat, we decided to analyze
a small quantity of software systems in this work.

5. RELATED WORK
This section presents the main previous related work re-

garding the identification of co-occurrence between design
patterns and bad smells.

Jaafar et al. [10] investigated the existence and the impact
of the static relationship between anti-patterns and design
patterns in software systems. They analyzed the behavior of
these relationships during software evolution. In their work,
a case study was performed with open source Java systems.
The authors identified that design pattern have relationship
with anti-patterns and that this relationship is in constant
growth as the system evolves. In addition, the Command
design pattern was identified as the one that presented the
highest relation with the investigated anti-patterns.

Cardoso and Figueiredo [3] performed an exploratory anal-
ysis to investigate the co-occurrence of bad smells in software
systems that use design patterns. Their study considered
the God Class and Duplicate Code bad smells and eleven of
twenty-three design patterns described by [9]. The authors
extracted the information of design patterns and bad smells
instances, and through of association rules they found the
co-occurrence between Command with God Class as well as
Template Method with Duplicate Code.

Jaafar et al. [11] present a study on the impact of static
and co-changes dependencies in classes with design patterns
and bad smells, and verify the relation of these dependen-
cies to occurrences of software failures. In their study, the
authors observed the evolution of three open-source Java
software projects and concluded that classes having static
dependencies with anti-patterns as well as classes having
static and co-change dependencies with anti-patterns and
design patterns tend to have more flaws.

Walter and Alkhaeir [18] investigated the relationship be-
tween design patterns and bad smells, and examined how
the presence of one interacts with the presence of the other
in a class. The authors carried out an empirical study with
seven bad smells and nine design patterns, identified in two
applications. They concluded that the presence of design
patterns is linked with a small number of cases of bad smells.

In the present work, we identified other types of co-occur-
rences to the God Class and Long Method bad smells in
relation to previous work, and discussed these cases. In ad-
dition we identified design patterns with low co-occurrence
with the bad smells used in this work. Our study applied
a di↵erent approach to detect bad smells. Our data rely
in detection strategies to detect bad smells based in soft-
ware metrics and their thresholds. These detection strate-
gies were previously proposed and evaluated by Filó et al.
[7].

XIII Brazilian Symposium on Information Systems, Lavras, Minas Gerais, June 5-8, 2017

 403

 6. CONCLUSION
In this study an evaluation of object oriented software sys-

tems that applies design patterns was carried out in order to
(i) investigate if the use of GOF design patterns avoid the oc-
currences of the bad smells God Class and Long Method, (ii)
identify possible co-occurrences of the GOF design patterns
with these bad smells, and (iii) identify the main situations
that lead software systems to present these co-occurrences.
The study considered a sample of five software systems, of
varying sizes. The main contribution of this work is that
their findings may help the software engineering community
in the comprehension of the internal structure of the soft-
ware systems that apply design patterns.

To identify the bad smells in the software systems, we used
detection strategies that are based in software metrics and
that were previously proposed and evaluated in the litera-
ture. The detection strategies are based in metrics consis-
tent with the characteristics of God Class and Long Method
bad smells. Moreover, the thresholds of the metrics used in
the strategies were also proposed and evaluated in previous
work.

The results of this study show that the use of design pat-
terns not necessarily avoid God Class and Long Method.
We found that Composite and Factory Method are the de-
sign patterns less associated with the bad smells considered
in this study. The main co-occurrences of design patterns
and bad smells found in this work are Template Method)
God Class and Observer) Long Method. In the manual
inspection of the artifacts that presented these relations, we
found classes with many responsibilities, complex methods
and code repetition. A better planning of the software de-
sign and its evolution could avoid the occurrences of bad
smells in the implementation of design patterns. In particu-
lar, such problems would be avoided by a better planning of
the software design, as well as by the application of refactor-
ing techniques during the evolution of the software system.

Another important information found is that most of the
software systems analyzed in this work presents both bad
smells, God Class and Long Method, in the implementation
of the design pattern. The characteristics of these bad smells
might be the reason of the co-occurrence of them. God Class
is a class that performs a lot of work in a software system,
and to accomplish all the tasks there are two not excluding
possibilities: the class has many methods and/or the meth-
ods of the class implement many tasks, i.e., some or all of
them are Long Methods.

As future works, it is important (i) to extend this research
to a greater amount of sample in order the results can be
generalized; (ii) to investigate co-occurrences of design pat-
terns with other bad smells; (iii) to conduct an analysis of a
larger sample considering type and size of the software sys-
tems would be also of help to improve the comprehension of
software systems that apply design patterns.

Acknowledgments
This work was partially supported by CAPES.

7. REFERENCES
[1] R. Agrawal, T. Imieliński, and A. Swami. Mining

association rules between sets of items in large
databases. SIGMOD Rec., 22(2):207–216, June 1993.

[2] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur.
Dynamic itemset counting and implication rules for
market basket data. SIGMOD Rec., 26(2):255–264,
June 1997.

[3] B. Cardoso and E. Figueiredo. Co-occurrence of design
patterns and bad smells in software systems: An
exploratory study. In Brazilian Symposium on
Information Systems, pages 347–354, 2015.

[4] K. A. M. Ferreira, M. A. Bigonha, R. S. Bigonha,
L. F. O. Mendes, and H. C. Almeida. Identifying
thresholds for object-oriented software metrics. The
Journal of Systems and Software, 85:244–257, 2012.

[5] T. G. S. Filó. Identifying reference values for
object-oriented software metrics. Master’s thesis,
UFMG, Computer Science, 2014.

[6] T. G. S. Filó, M. A. S. Bigonha, and K. A. M.
Ferreira. Raftool - filtering tools for methods, classes
and packages with uncommon measurements of
software metrics. In WAMPS, pages 1–6, 2014.

[7] T. G. S. Filó, M. A. S. Bigonha, and K. A. M.
Ferreira. A catalogue of thresholds for object-oriented
software metrics. In SOFTENG, pages 48–55, 2015.

[8] M. Fowler and K. Beck. Refactoring: Improving the
Design of Existing Code. Addison-Wesley, 1999.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley, 1994.

[10] F. Jaafar, Y. Guéhéneuc, S. Hamel, and F. Khomh.
Analysing anti-patterns static relationships with
design patterns. ECEASST, 59, 2013.

[11] F. Jaafar, Y.-G. Gueheneuc, S. Hamel, F. Khomh, and
M. Zulkernine. Evaluating the impact of design
pattern and anti-pattern dependencies on changes and
faults. Empirical Software Engineering, 21(3):896–931,
2016.

[12] M. Lanza and R. Marinescu. Object-Oriented Metrics
in Practice. Springer-Verlag, 2006.

[13] R. Marinescu. Em Measurement and Quality in
Object-Oriented Design. PhD thesis, University of
Timisoara, 2002.

[14] B. L. Sousa, M. A. S. Bigonha, and K. A. M. Ferreira.
A tool for detection of co-occurrences between design
patterns and bad smells. Technical report,
Programming Language Lab (UFMG), llp 001-2017,
2017.

[15] D. Speicher. Code quality cultivation.
Communications in Computer and Information
Science, 348:334–349, 2013.

[16] R. Terra, L. F. Miranda, M. T. Valente, and R. S.
Bigonha. Qualitas. class corpus: A compiled version of
the qualitas corpus. ACM SIGSOFT Software
Engineering Notes, 38(5):1–4, 2013.

[17] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and
S. T. Halkidis. Design pattern detection using
similarity scoring. Software Engineering, IEEE
Transactions on, 32(11):896–909, 2006.

[18] B. Walter and T. Alkhaeir. The relationship between
design patterns and code smells: An exploratory
study. Information and Software Technology,
74:127–142, 2016.

