
FindSmells: Flexible Composition of Bad Smell
Detection Strategies

Bruno L. Sousa, Priscila P. Souza,
Eduardo Fernandes

Computer Science Department
UFMG - Belo Horizonte, Brazil

Email: {brunosousa, priscilasouza,
eduardofernandes}@dcc.ufmg.br

Kecia A. M. Ferreira
Computer Department

CEFET-MG - Belo Horizonte, Brazil
Email: kecia@decom.cefetmg.br

Mariza A. S. Bigonha
Computer Science Department

UFMG - Belo Horizonte, Brazil
Email: mariza@dcc.ufmg.br

Abstract—Bad smells are symptoms of problems in the source
code of software systems. They may harm the maintenance
and evolution of systems on different levels. Thus, detecting
smells is essential in order to support the software quality
improvement. Since even small systems may contain several bad
smell instances, and considering that developers have to prioritize
their elimination, its automated detection is a necessary support
for developers. Regarding that, detection strategies have been
proposed to formalize rules to detect specific bad smells, such
as Large Class and Feature Envy. Several tools like JDeodorant
and JSpIRIT implement these strategies but, in general, they do
not provide full customization of the formal rules that define a
detection strategy. In this paper, we propose FindSmells, a tool for
detecting bad smells in software systems through software metrics
and their thresholds. With FindSmells, the user can compose
and manage different strategies, which run without source code
analysis. We also provide a running example of the tool.

Video: https://youtu.be/LtomN93y6gg

I. INTRODUCTION

Bad smells are symptoms of problems in the source code or
design of software systems [1]. These bad smells may affect
the code of a system on different levels, such as packages,
classes, and methods [2]. For instance, Large Class is a
class with excessive knowledge and responsibilities [1] that
hinders the code readability, due to its extent and its structural
complexity. Changes in a Large Class may affect several
different parts of the system. Thus, it is necessary to detect
bad smells in order to improve the quality and decrease the
maintenance efforts in software development [3], [4].

Even small-sized software systems may have several bad
smell instances [5]. Thus, finding smells requires too much
efforts from the development team. In addition, the perception
of developers regarding each smell varies from one developer
to another. This happens because manual inspection is subjec-
tive, i.e., it depends on the developer’s expertise in bad smells
and their definitions [6]. In turn, formal, well-defined strategies
can support the automated detection of bad smells without
human-related biases. In this context, detection strategies are
formal rules aimed at characterizing bad smells by combining
software metrics, thresholds, and logical operators [7].

Previous work [8], [9] proposes detection strategies for dif-
ferent bad smells such as Data Class, Feature Envy, and Long
Method. To implement these strategies, some detection tools

have been proposed [2], [10]. However, several metric-based
tools do not allow detection strategies to be configured or
customized. Therefore, a tool based on computed metrics, with
flexible configuration of detection strategies, may guide the
developers in the detection phase and, then, in the priorization
of bad smells for elimination.

This paper presents a tool, FindSmells, which supports the
detection of bad smells based on software metrics and their
thresholds. The tool receives as input XML files containing
the software metrics computed for a software system. With
FindSmells, the user may propose its own detection strategies
considering the software metrics available in the XML files,
the comparison logical operators, and the thresholds per met-
ric. In order to assess whether the tool is able to support both
composition and run the detection strategies we conducted
a study with 12 Java software systems from Qualitas.class
Corpus [11]. Our results suggest that FindSmells may be
effectively used to support bad smell detection in an easy way.

II. BAD SMELL DETECTION STRATEGIES

A detection strategy is a formal rule that charatecterizes a
specific bad smell. In addition, previous work [2], [7] defines
detection strategies for different bad smells, such as Large
Class and Feature Envy. Each detection strategy is composed
by a sequence of clauses connected by the logical operators
AND and OR, with the operator AND preceeding OR in
the definition of strategies, including thresholds. A clause
is composed by a software metric, e.g., Method Number of
Code Lines (MLOC), a comparative operator, e.g., >, and a
threshold, e.g., 1000. For instance, the clause MLOC > 1000
may support the identification of a Long Method [1], a method
that is excessively large and complex.

A key factor to compose effective detection strategies is the
selection of representative thresholds [12]. Concerning this,
previous work [12], [13], [14] proposes different techniques
to derive thresholds for software metrics and, also, catalogs of
thresholds for different sets of metrics [4].

Some supporting tools [6], [10], [15] provide the automatic
running of detection strategies. However, they are not flexible
with respect to the customization of clauses, or regarding
threshold changing. Eventually, some changes are necessary



to apply a detection strategy in a specific development context
because systems from different domains tend to vary in
size, complexity, and programming language. Therefore, the
customization of detection strategies may benefit developers
in the software quality assessment.

III. THE FINDSMELLS TOOL

This section presents the proposed tool, FindSmells. Find-
Smells’ approach uses a static analysis of bad smells based on
computed metrics and its thresholds. This decision was taken
to reduce the response time when analyzing large systems
with hundreds of source elements, such as packages, classes,
and methods. Although software metrics have to be computed
to support the analysis performed by FindSmells, well-known
and largely used tools such as Metrics1 and CodePro Analytix2

support this task. Our goal is to support developers with a
flexible, light-weighted mean to assess the software quality by
the identification of bad smells that may harm the maintenance
and evolution of software systems.

The section remaining enlist in Section III-A the main
features of FindSmells. Section III-B describes the tool’s
architecture. Section III-C provides technical data in details
regarding its implementation.

A. Main Features

The main features of FindSmells are described as follows.
Import of Computed Metrics. Identify bad smells in a

given system, FindSmells requires that the user imports an
XML file with computed software metrics for the system. This
input file has to be written in accordance with a well-defined
format described on the tool’s website [16].

Composition of Detection Strategies. The user may com-
pose new detection strategies through (i) a panel with the 21
software metrics computed by the Metrics or other tool, (ii) a
comparative logical operators (<, ≤, >, ≥, and =), and (iii)
thresholds defined by the user. To guide users in the definition
of thresholds, FindSmells suggests a catalog proposed by Filó
et al. [4]. This catalog provides thresholds for 18 software
metrics such as McCabe’s Cyclomatic Complexity, Number of
Methods (NOM), and Weighted Methods per Class (WMC).
This catalog is available in the Help menu in FindSmells, and
it was previously evaluated by means of empirical studies [4],
[17]. Each composed strategy may be saved in the FindSmells.

Management the Detection Strategies. The user may
consult previously saved detection strategies in order to run
them again as it is, or he may replace only the thresholds. In
case the user needs to configure the strategy to change metrics
and logical operations, a new strategy must be composed. The
user also can delete a detection strategy from the database.

Running the Detection Strategies. To run the detection
strategy defined by the user, FindSmells filters the source code
elements, methods and classes, that are in accordance with the
rules defined for each metric composing the detection strategy.

1http://metrics.sourceforge.net/
2https://marketplace.eclipse.org/content/codepro-analytix

Result Generation, Visualization, and Export. After run-
ning the detection strategy, FindSmells generates a report with
all the occurrences of the respective bad smell. The obtained
results are presented to the user in a data grid view for
navigation. The tool also exports the obtained results via CSV
file to provide easy manipulation and further analysis. This
output file is automatically saved in the tool’s workspace.

Log Visualization. The user may consult logs of the tool,
in order to identify problems that eventually occur in the
imported XML file. This feature may be helpful to track some
problems like invalid characters in the input file.

Help. To support the users that are unfamiliar with thresh-
olds, FindSmells provides a catalog proposed by Filó et al. [4]
with 18 metrics thresholds for consultation. This catalog may
assist the users in the composition of detection strategies. In
this menu, the user may consult the link for a video with the
main features of FindSmells.

B. Tool’s Architecture

Figure 1 illustrates the architecture of FindSmells. The
tool is composed by five modules, whose functionalities are
described as follows.

Fig. 1. Architecture of FindSmells

Input Manager. This module is responsible for the input
management. It receives one or more XML files with
precomputed software metric values for a given system and
reads these files according to the proposed input format.
The pattern XML format follows the format exported by
Metrics. Since FindSmells performs a static analysis from
metrics, it supports bad smell detection in projects developed
in any programming language. This module also assesses the
occurrence of inconsistences in the input file, such as invalid
characters, and generates an error report that can be exported
for further analysis. Then, the metric values are persisted
in the database. The default input format is available for
consultation in the tool’s website [16].

Detection Strategy Manager. This module provides the
composition, edition, and exclusion of detection strategies
by the user. It implements a validator to assess whether
the logical expression composing the detection strategy is
syntactically correct. For instance, it validates the correct use
of parentheses and the use of logical connectors. In addition,
the composed strategies are persisted in the database.

Bad Smell Calculator. This module implements the execution
of a given detection strategy on the software metrics persisted
in the tool’s database. It filters the source code elements in



accordance with the detection strategy definition, in order to
identify bad smells occurrences.

Output Generator. From the list of bad smells occurrences
computed by FindSmells, this module generates a CSV output
file depending on the granularity of the detection strategy,
which is, class, method, or package-level. The output file
contains the name of each source code that is affected by a
bad smell, the element’s source – in the case of method-level
strategies, the source is a class – and the element’s source
package identified by the detection strategy. These data may
be helpful to support the smell traceability.

Data Viewer. This module provides the output report via
data grid view, allowing the user to navigate through the list
of bad smell occurrences identified. In addition, it presents
the rate of code elements affected by a specific bad smell.

C. Implementation

FindSmells was implemented in Java programming lan-
guage with support of JDK 1.7 and the Java Swing API for
creating the user interface. We chose Java because it is one
of the most popular languages, in academy and industry. To
provide data persistance, we adopted the SQLite3 database
manager, Release 3.8.11.2, and the JDBC API, because it is
light-weighted and easy to integrate with the source code. To
parse XML input file, we used the JDOM API that provides
XML interpretation for Java applications. To build the user
interface, we used the NetBeans IDE4, release 8.0.2, which
provides a drag and drop feature for this purpose. FindSmells
is available in Release 1.0 via research website [16]. The
source code contains 6,049 lines of code (LOC).

IV. RUNNING EXAMPLE

This section describes the FindSmells’ usage. Figure 2
presents the main screen of FindSmells. This screen provides
three functionalities: (i) in the module Import System, the user
imports the XML input file with the software metrics for a
single system. For each imported system, the user can define
a name for future identification; (ii) in Run Detection Strategy,
the user selects a previously imported system for analysis and
a previously composed detection strategy to run; (iii) in the top
of the main screen appears a menu composed of four options:
File to view error reports; Manage Strategies to compose,
edit, and delete detection strategies; Manage Systems to delete
imported systems; and Help, which contains a reference of
threshold catalog to support the strategy composition and an
About option with the tool’s release, developer list, and links
for the source code and a video tutorial.

Figure 3 presents the screen for composing detection strate-
gies. It is possible to define a name for the strategy and,
also, its granulatiry. Depending on the selected granularity,
a specific set of metrics is unlocked for selection. To compose

3https://sqlite.org/
4https://netbeans.org/

Fig. 2. Main Screen to Import XML Files and Run Detection Strategies

Fig. 3. Screen to Compose a Detection Strategy

a clause, the user may select logical operators, separators, e.g.,
parentheses. During the detection strategy composition, its
components are presented in the box Detection Strategy. Then,
the tool presents a list of metrics used to compose the proposed
strategy. The user must manually provide the thresholds per
metric in the next screen after saving the detection strategy.

After running the detection strategy selected in the screen of
Figure 2, FindSmells presents the list of bad smell occurrences
identified by the strategy. Finally, Figure 4 illustrates the
data grid view with the bad smell list, allowing the user
navigate through the detection results. Each line of the grid
contains the same columns reported by the CSV output file
(see Section III-B). In addition, there is a button in the inferior
corner of the screen to export the detection results.

V. TOOL’S EVALUATION

FindSmells was evaluated in a empirical study conducted
by Souza [17]. For this purpose, the user registered and run
detection strategies for 5 bad smells, namely Large Class,
Long Method, Data Class, Feature Envy, and Refused Bequest.



Fig. 4. Data Grid View and Button to Export Results as a CSV File

The composed strategies used are based on previous work [1],
[2]. Each strategy was executed with 12 Java systems from
Qualitas.class Corpus [11]. The results suggest that FindSmells
is able to run correctly the strategies proposed by the user [17].
The evaluation results are available in the tool’s website [16].

VI. RELATED WORK

Several tools, for instance JSpIRIT [6] and JDeodorant [10],
for bad smell detection have been proposed in the literature.
JDeodorant is an Eclipse IDE plug-in tool for Java software
systems that aims to detect a subset of bad smells listed by
Fowler [1], such as Large Class, Feature Envy, and Switch
Statement. The tool provides data exported for further analysis.
PMD5 is a tool largely used in academic research. It provides
the detection of several bad smells, including Large Class,
Long Method, and Duplicated Code. JSpIRIT is a tool for Java
systems, also an Eclipse plug-in with the data export feature.
This tool aims to detect a larger set of bad smells, such as
Long Method, Data Class, and Shotgun Surgery.

In addition to the large amount of proposed tools, there
are different techniques used to support these tools. Most of
them are metric-based [18] but their detection strategies are
predefined without high flexibility for configuration. Machine
learning, lexical analysis, and graphs are other approaches
used to support the detection of bad smells. However, many
of them may not scale for medium to large-sized systems,
with several methods, classes, and packages [3], [5]. We
developed FindSmells, which provides flexibility to the user
regarding the composition of detection strategies from a set of
computed metrics and their thresholds, addressing medium to
large systems with several methods, classes and packages.

VII. CONCLUSION

This paper presents FindSmells, a tool for detecting bad
smells. This tool receives as input the XML files containing
computed software metrics. Through a simple user interface,
the tool allows the user to compose detection strategies and
run them without the source code of the system under analysis.
FindSmells also allows the user to manage detection strategies
through a database, and provides the exportation of detection
results. FindSmells is a tool whose purpose is to support the
development team in assessing the quality of software systems.

5https://pmd.github.io/

ACKNOWLEDGMENTS

This work was sponsored by CAPES.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code. Pear-
son Education, 2009.

[2] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice.
Springer, 2006.

[3] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Compar-
ison and Evaluation of Clone Detection Tools,” IEEE Transactions on
Software Engineering (TSE), vol. 33, no. 9, pp. 577–591, 2007.

[4] T. Filó, M. Bigonha, and K. Ferreira, “A Catalogue of Thresholds for
Object-Oriented Software Metrics,” in Proc. of the 1st SOFTENG, 2015,
pp. 48–55.

[5] I. Macia, J. Garcia, D. Popescu, A. Garcia, N. Medvidovic, and A. von
Staa, “Are Automatically-Detected Code Anomalies Relevant to Archi-
tectural Modularity?: An Exploratory Analysis of Evolving Systems,” in
Proc. of the 11th AOSD, 2012, pp. 167–178.

[6] S. Vidal, C. Marcos, and J. Dı́az-Pace, “An Approach to Prioritize Code
Smells for Refactoring,” Automated Software Engineering (ASE), pp. 1–
32, 2014.

[7] R. Marinescu, “Measurement and Quality in Object-Oriented Design,”
in Proc. of the 21st ICSM, 2005, pp. 701–704.

[8] ——, “Detection strategies: Metrics-based rules for detecting design
flaws,” in Software Maintenance, 2004. Proceedings. 20th IEEE Inter-
national Conference on. IEEE, 2004, pp. 350–359.

[9] M. J. Munro, “Product metrics for automatic identification of” bad
smell” design problems in java source-code,” in Software Metrics, 2005.
11th IEEE International Symposium. IEEE, 2005, pp. 15–15.

[10] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou, “JDeodorant: Iden-
tification and Removal of Type-Checking Bad Smells,” in Proc. of the
12th CSMR, 2008, pp. 329–331.

[11] R. Terra, L. F. Miranda, M. T. Valente, and R. Bigonha, “Qualitas.class
Corpus: A Compiled Version of the Qualitas Corpus,” ACM SIGSOFT
Software Engineering Notes, vol. 38, no. 5, pp. 1–4, 2013.

[12] K. Ferreira, M. Bigonha, R. Bigonha, L. Mendes, and H. Almeida,
“Identifying Thresholds for Object-Oriented Software Metrics,” Journal
of Systems and Software (JSS), vol. 85, no. 2, pp. 244–257, 2012.

[13] T. Alves, C. Ypma, and J. Visser, “Deriving Metric Thresholds from
Benchmark Data,” in Proc. of 26th the ICSM, 2010, pp. 1–10.

[14] P. Oliveira, M. T. Valente, and F. P. Lima, “Extracting Relative Thresh-
olds for Source Code Metrics,” in Proc. of the CSMR-WCRE, 2014, pp.
254–263.

[15] E. Murphy-Hill and A. Black, “An Interactive Ambient Visualization
for Code Smells,” in Proc. of the 5th SOFTVIS, 2010, pp. 5–14.

[16] B. Sousa, P. Souza, E. Fernandes, M. Bigonha,
and K. Ferreira, “FindSmells,” 2016, Available at:
http://www2.dcc.ufmg.br/laboratorios/llp/Products/indexProducts.html.
(accessed November 17, 2016).

[17] P. Souza, “Using Software Metric Thresholds to Assess the Quality of
Object-Oriented Software Systems,” 2016, MSc. dissertation, Federal
University of Minas Gerais, Belo Horizonte, Brazil. (in portuguese).

[18] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo, “A
Review-Based Comparative Study of Bad Smell Detection Tools,” in
Proc. of the 20th EASE, 2016, pp. 1–12.


