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Abstract—The dependence among modules in a software
system usually is represented as a network, in which the nodes
are the modules, and the edges are the connections between the
modules. The relationships among modules in software systems
are hard to assess, especially in large programs. Knowing the
nature of the software system structures is very important
to improve maintenance tasks and other challenging tasks in
software development. A previous work of the authors of this
paper has defined a model to the topology of software networks,
named Little House. This model is a generic macroscopic
view of software systems, and it is an adaptation of the well-
known Bow-tie model. According to Little House, a software
network can be partitioned into six components, in such a
way there is a special pattern of connections among them.
This paper describes the results of a quantitative evaluation of
Little House. The aim of this work is to investigate whether
the components of Little House can be described by any
pattern of software metric values. The results of this evaluation
indicate that in the software systems developed currently there
are two main components of Little House that have critical
values of metrics. This finding suggests that classes from those
components should be carefully considered when maintenance
tasks are performed in the program.

Keywords-software metrics; complex networks; software
topology; software visualization.

I. INTRODUCTION

The Software Engineering community have defined prin-

ciples and processes to be adopted in order to develop high

quality software systems. However, we know too little about

the real nature of the software systems we have to deal with.

Knowing the way the software systems are really constructed

is essential for challenging tasks in software development,

such as maintenance, testing and refactoring. The lack of

this knowledge is detrimental to such tasks, because a

substantial portion of them depends upon understanding

software structure [1].

A software system can be viewed as a network in which

the nodes correspond to the modules of the system, and an

edge corresponds to a relationship between two of those

modules. In an object-oriented software system, the classes

can be taken as the modules. In this case, if a class A uses

a class B, then there is an edge from A to B. Following

this idea, some researches have been carried out in order to

identify the nature of networks constituted by the modules

within the software systems. The main findings of those

works indicate that the in-degree distribution in software

system networks follows a power-law [2], [3], [4]. However,

the knowledge about the real structural pattern of software

systems is still incipient.

Aiming to overcome this problem, a model called Little

House has been defined in a previous published work of

the authors [5]. Little House is a generic model of software

system networks. According to Little House, the network

constituted by the modules in a software system has six

components, which are connected one to another by fol-

lowing a specific pattern. Little House is intended to be

used to improve tasks such as maintenance and refactoring.

Nevertheless, to achieve this aim, the model needs to be

deeply investigated in order to identify the characteristics

of its components and to determine its implications. For

this purpose, the research presented in this work carried out

an empirical characterization of Little House by means of

software metrics. The software metrics considered in this

analysis evaluate size, information hiding, class cohesion

and inheritance, because these are important software design

properties related to software maintenance. The aim of this

work is to investigate whether there are components of

Little House which concentrate classes with critical values

of software metrics. The results of this work show that there

are two main critical components in Little House. Although

this work does not exhaust all the necessary analysis on the

implications of Little House, their results indicate that the

model may be used as a robust tool to assist in understanding

and maintaining programs, for instance, by aiding to identify

critical parts of the program graphically.

The remaining of this paper is organized as follows.

Section II discusses the related work. Section III describes

the Little House model. Section IV describes the method

used to perform the data collection and analysis. Section

V shows and discusses the results of the study. Section VI

discusses the limitations of the work. Section VII brings the

conclusions and indications of future work.
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II. RELATED WORK

Software structure visualization is a way to aid under-

standing programs [6]. In order to achieve a mental model

of software systems, some metaphors have been used to

represent programs. For instance, Wettel and Lanza [7]

have defined a 3D approach for software visualization by

representing a software system as a city. The aim of their

approach is to show a “beautiful picture” of the system and

represent it as a city in which the classes are the buildings

and the packages are the blocks. However, directed graphs

seems to be the most common approach to represent the

relationship among software entities. In an object-oriented

software system, these fundamental entities may be the

classes. Using a directed graph to represent an object-

oriented program, classes will be the nodes, and a relation-

ship between two classes will be an edge. For example, if

a class A depends upon a class B, hence there will be an

edge from A to B. As pointed by Ball and Eick [8], graph

layout is one of the main problems in software visualization

because nodes and edges must be showed in such way the

graph can clearly show the system structure. This problem

is particularly difficult and important in the case of large

systems. The present work is related to the topic of software

visualization because it evaluates Little House[5], which

provides a visual representation of software networks. Little

House uses graphs to represent such structures in a macro

level, what may be useful to cope with large systems. Little

House is described in details in Section III.

More than just a tool for software visualization, Little

House is a model that may help understanding the real

structures of software systems. Some initiatives for investi-

gating the real structures of software systems have occurred

in the recent years. For instance, the concepts of Complex

Networks [9] have been applied to characterize software

structures. Many researches have confirmed that software

structures have characteristics of scale-free networks [2], [3],

[4]. In a scale-free network, there is a large number of nodes

with a low degree, and a very small portion of nodes with

a high degree. Wen et al. [10] have identified characteristics

of scale-free networks in Java programs, and Yao et al.

[11] have found that the scale-free properties become more

evident as the software system grows.

Other approaches to characterize software structures have

been also applied. Baxter et al. [3] have characterized the

shape of Java programs by means of software metrics. They

have found that most software metrics follow a power-law.

Lindsay et al. [12] have carried out an empirical analysis

in order to identify the characteristics of large classes in

object-oriented programs. They have concluded that most

large classes have poor design.

Those works expose important characteristics of software

systems. However, this is not enough to provide a solid

knowledge about the nature of the programs we have to

Figure 1. Little House – The generic macroscopic topology of software
networks

maintain. The present work is based in Little House model,

and aims to characterize the components of the model by

means of software metrics in order to advance the knowledge

about real software structures.

III. THE LITTLE HOUSE MODEL

Little House is a model for the macroscopic topology

of object-oriented software systems [5]. It was defined

having as basis the well-known Bow-tie model [13], which

represents the Web graph. Little House is an adaptation of

the Bow-tie picture, in order to make clearer the relationships

among the components of the model. The Little House

model is a graph in which a node corresponds to a specific

group of classes. In each of these components, classes are

freely connected one to another. The model is depicted in

Figure 1. Figure 2 shows the software networks of Hibernate

and JUnit modeled by Little House. The components of

Little House are the following:

• In: classes from In can use classes from other

components. However, they are not used by classes

that are outside of In. So, classes from In can demand

services from classes of other components, but they

only provide services to classes inside In. In is, then,

the user component of the system.

• LSCC (Largest Strongly Connected Component):
this component is the core of the system. In this

component, any class can reach all the other classes of

LSCC. Therefore, every class in LSCC depends upon

all the other classes in LSCC, directly or indirectly.

Classes from LSCC are strongly connected one to

another, what might make this component hard to be

understood, tested and maintained.

• Out: classes from Out can be used by any other class

of the software system, but they use only classes

which are inside this component. That is, Out is the
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(a)

(b)

Figure 2. Software networks modeled by Little House: (a) Hibernate
(version 3.5.1); (b) JUnit (version 4.8.1)

provider component of the system.

• Tubes: classes from Tubes use only classes from this

component, Out or Tendril. Besides, a class from

Tubes can be used only by classes from Tubes or In.

• Tendril: classes from Tendril use only classes from

this component or from Out. Besides, a class from

Tendril can be used only by classes from Tendril,
Tubes or In.

• Disconnected: a class in this component has no

connection with classes from other component.

Little House was defined to provide a macroscopic view

of software systems, so that software engineers can use it to

analyze the software systems they deal with. For instance,

when a software system has a large LSCC, it might be a

sign of a high complexity and difficulty of maintenance,

and changing a class from Out might imply in a larger

impact than changing a class from In. This model may

improve tasks such as software maintenance and refactoring.

However, to achieve this aim, a detailed characterization of

the model is necessary. In this vein, this work presents an

empirical evaluation of Little House by means of software

metrics.

Table I
SOFTWARE SYSTEMS ANALYZED IN THE STUDY

Name Category Age #classes #versions
DBUnit Database 2002 -

2009
198 -
369

25

FreeCol Game 2003 -
2010

112 -
5902

27

Hibernate Database 2004 -
2010

956 -
2446

53

Jasper
Reports

Development 2001 -
2010

525 -
5304

50

Java
Groups

Cooperation 2003 -
2009

696 -
1137

40

JGNash Financial 2002 -
2010

782 -
3603

40

Java
msn

Communication 2004 -
2010

494 -
872

10

Jsch Security 2004 -
2009

202 -
271

29

JUnit Development 2000 -
2009

78 -
230

18

Logisim Education 2005 -
2009

908 -
1185

28

MeD’s Storage 2003 -
2010

64 -
517

60

Phex Network 2001 -
2009

393 -
1352

26

Squirrel
sql

Database 2006 -
2010

424 -
1223

26

IV. METHODS

The research question of this work is the following:

“Which components of Little House have the highest per-

centage of classes with potential design deviances?”. In this

study, we apply software metrics to investigate this question.

In this work, data from 13 open-source software systems

developed in Java were analyzed. The software systems

were selected satisfying the following criteria: they were

developed in Java, they have at least 5 versions or releases,

and they are 4 years old at least. Another criterion was

the availability of their bytecodes because the tool used

to perform the measurements evaluates the compiled code,

not the source code. Table I shows the data of the set of

programs used in this study.

The software measurements were collected by a tool

called Connecta [14]. The software metrics considered in

this study are described in Section IV-A. Connecta also

generates graphs which represent the software networks, and

exports them as a file in an appropriate input format for Pajek

[15], a network analysis tool. Pajek has as entry a file which

describes the nodes and the edges of a network. Using this

tool, the software network was fitted to the Bow-tie model

[13] and, then, the result of this fitting was processed in

order to be adapted to Little House. In the sequence, the

list of classes within each component of Little House was

generated.

The analysis performed in this study is related to the iden-

tification of the components with the worst measurements
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Table II
THE SOFTWARE METRICS THRESHOLDS

Metric Reference Values
# Afferent couplings Good: up to 1

Regular: 2 to 20
Bad: greater than 20

# Public fields Good: 0
Regular: 1 to 10
Bad: greater than 10

# Public methods Good: 0 to 10
Regular: 11 to 40
Bad: greater than 40

DIT Typical value: 2
LCOM Good : 0

Regular: 1 to 20
Bad: greater than 20

COR Good: 1
Regular: 0,2 to 0,5
Bad: less than 0,2

for each software metric considered in this research. Two

previous analyses were performed in this study. In the first

one, for each software and for each component of Little

House, the mean value of the metric was calculated. In the

second analysis, the median of the values were considered.

These analyses did not lead to any distinguished result. A

possible reason for that is the property of the distribution

values of the measures. Most of the metrics used in this

study are modeled for a power-law distribution [3], [16].

In such distribution, there is a large amount of occurrences

of low values, and there is a very few occurrences of high

values. Hence, the mean value in power-law distributions is

not representative. The analysis of these data, hence, needs

to consider this property.

To perform the data analysis, it was used the software met-

ric thresholds proposed by Ferreira et al. [16]. The thresholds

of the software metrics are discussed in Section IV-B. For

each software and for each software metric, the number of

classes within each component having the metrics in the

regular or bad ranges was considered. The justification for

considering those ranges is the premise that when a class has

a metric classified as bad or regular is a sign that the class

might have design flaws, whereas classes with a given metric

in the good range do not present relevant design deviances

regarding the evaluated factor. Although this research did not

aim at determining whether this premise is true, the work of

Ferreira [16] describes results of experiments that indicate

that it can be accepted.

The aim of the analysis is to identify, for each software

system, the components of Little House with the highest

relative number of classes with a given software metric in

the regular or bad ranges.

A. The Software Metrics Set

In this study, it was considered software metrics that

evaluate the following software design properties: size, in-

formation hiding, class cohesion and inheritance. The main

criterion for the selection of the metrics is the existence of

thresholds proposed for them in the literature. The metrics

are described following.

• Number of public methods (PM): it is the number of

public methods defined in a given class. This metric is

an indicator of the interface size of a class.

• Number of public fields (PF): it is the number of

public fields defined in a given class. The use of

public methods is recognized as a bad design, because

it could introduce strong interdependence between the

classes of a software system.

• Depth of Inheritance Tree (DIT) [17]: it is the

maximum distance of a class from the root of the

inheritance tree. The higher the DIT of a class, the

higher the number of classes involved in the definition

of the class.

• Number of Afferent Couplings (AC): it is the number

of classes which depend upon a given class directly.

When representing an object-oriented software system

as a directed graph, this metric corresponds to the

in-degree of a given node. In such graph, the classes

are represented by the nodes, and the connections

between the classes are represented by the edges. In

this work, we consider that there is a connection from

a class A to a class B in the following cases: A invokes

a method of B; A uses a field of B; A is a subclass of B.

• Lack of Cohesion in Methods (LCOM) [17]: this

metric is a measure for the lack of internal cohesion

of a class. The higher the value of LCOM, the

lower the level of internal cohesion. LCOM has been

widely criticized in the literature. Nevertheless, it

is implemented in many tools [18]. For this reason,

LCOM was analyzed in the study.

• Cohesion by Responsibility (COR) [19]: this metric

is given by 1/C, where C is the number of disjointed

sets of methods within the class. Each set consists of

similar methods. Two methods are similar when they

use a common field or a common method of the class.

If a method a is similar to a method b, and b is similar

to a method c, then a is also similar to c. For instance,

if there are two sets in a class, COR will result in 0,5.

This indicates that the class has 2 responsibilities. If

there is only one set in the class, COR will result in

1, indicating a high cohesion.

B. The Software Metric Thresholds

Ferreira et al. [16] have proposed thresholds for six object-

oriented software metrics. The derivation of the thresholds
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is based on the statistical analysis of the data gathered from

a large sample of open source Java projects. They observed

that the values of some software metrics are modeled by a

power law, what implies that the mean value of the metrics

are not representative. They, then, analyzed the data in order

to identify three ranges of values for each of the evaluated

metrics: the values that have a high frequency, the values

with an intermediate frequency, and the values with a very

low frequency. These ranges of values are called good,

regular and bad, respectively. The proposed thresholds are

a benchmark for software evaluation by means of software

metrics, since they indicate the common practice on software

design.

The thresholds proposed by Ferreira et al. [16] are shown

in Table II. For instance, the thresholds for AC (number of
afferent couplings) are: up to 1 - good, 2 to 20 - regular,

and greater than 20 - bad. This thresholds indicate that the

developer should avoid classes having AC greater than 20,

because classes with this characteristics appear in software

systems rarely. This does not mean that a class with AC

greater than 20 has necessarily a poor design. However, this

should be taken as a warning sign of design deviances.

DIT is the only metric whose values are not modeled by a

power-law. Hence, the mean value of DIT is representative.

The mean value of DIT is 2. As the depth in the inheritance

tree can make a class more difficult to be understood, it is

recommended to keep DIT up 2.

Ferreira et al. [16] have analyzed the proposed thresholds

empirically. The results of their experiments have shown

that the bad range of the metrics can be used to identify

classes with design deviances, as well as the good range

is able to indicate classes with a good design. Using the

same approach, the thresholds of COR was also derived and

evaluated by Ferreira et al. [19]. The resulting thresholds of

COR are also shown in Table II.

In this work, these thresholds are used in order to evaluate

the components of Little House. We use the term critical to

refer to the metric values which fall in the bad or in the

regular ranges. In the case of DIT, the term critical refers

to values greater than 2.

V. RESULTS

In this section, we describe the results of the study. We

first present the data about the size of the components of

Little House. Further, we describe and analyze the data about

the software metrics in Little House.

A. Size of the Components

Table III shows the size of the components of Little House

for each software systems analyzed in this work. These data

indicate that there is not a particular component that in

general concentrates most classes in a system.

Tubes is the component of Little House whose classes link

classes from In to classes from Out. These results indicate

Table III
SIZE OF THE COMPONENTS OF LITTLE HOUSE IN PERCENTAGE OF

NUMBER OF CLASSES

Name Disc. LSCC In Out Tubes Tendrils
DBUnit 14 8 22 20 19 17
FreeCol 5 70 2 21 0 2
Hibernate 21 20 24 15 3 17
Jasper
Reports

17 9 3 21 10 40

Java Groups 16 1 62 1 3 17
JGNash 13 9 1 18 3 56
Java msn 13 10 31 25 13 8
Jsch 45 14 23 10 2 6
JUnit 17 4 24 2 4 49
Logisim 10 26 8 32 2 22
MeD’s 6 18 1 30 0 45
Phex 11 30 1 53 1 4
Squirrel 15 47 3 29 2 4

X 16 20 16 21 5 22
Standard 10 19 18 14 6 19
deviation

that this component has a small portion of classes of the

system in general. The mean value of the proportion of

classes within Tubes is 5, with a standard deviation of 6.

FreeCol and Medś Movie Manager indeed do not have the

Tubes component.

In is the component of Little House whose classes are not

used by classes from other components. From the viewpoint

of the macroscopic topology of the system, it is the client

component in the system, because it is the only component

that requires the services of other components, but does not

provide any service to them. The number of classes within

In corresponds to 16% of the system in general.

LSCC, Out and Tendrils have the highest percentage of

classes of the system, in general. This result emphasizes the

importance of these components, especially LSCC and Out.
Out has classes that are used by other components but do not

use classes from other components, i.e., they are essentially

service providers. Therefore, classes from Out have a central

hole in the system. LSCC is the component whose classes

are strongly connected one to another. Hence, the larger the

number of classes in LSCC, the higher the number of classes

affected by a change in a class of LSCC.

B. Software Metrics in Little House

This section describes the data of the software metrics

observed in the Little House components for each program

from the sample. The data summarization is presented in the

next section.

Data from the measures of the components are shown in

Tables IV and V. The data show the percentage of classes

in each component whose measures fall in the bad or in

the regular range of the metric threshold. For instance, in

DBUnit, 70% of the classes have the number of afferent
coupling (AC) in the bad or in the regular range of this

metric. The data are from the latest versions of the software
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Table IV
PERCENTAGE OF CLASSES WITH CRITICAL SOFTWARE METRIC VALUES

Name Component AC LCOM COR DIT PF PM
DBUnit Disc. 0 2 9 7 4 4

LSCC 70 66 75 0 4 8
In 36 54 75 0 8 14
Out 52 69 80 7 9 8
Tubes 44 50 78 0 14 8
Tendrils 25 51 70 0 7 4

FreeCol Disc. 0 20 20 7 12 7
LSCC 39 48 52 9 19 14
In 23 53 69 11 8 11
Out 40 57 56 6 27 2
Tubes - - - - - -
Tendrils 8 9 9 71 0 0

Hibernate Disc. 0 3 3 0 4 10
LSCC 51 81 80 0 9 24
In 28 71 70 0 10 15
Out 64 56 50 1 13 10
Tubes 49 68 71 0 16 16
Tendrils 34 66 58 3 18 10

Jasper Disc. 0 0 0 0 15 11
Reports LSCC 47 87 90 0 1 25

In 15 67 70 0 10 2
Out 65 68 66 2 26 25
Tubes 52 82 82 0 30 23
Tendrils 18 71 68 2 21 5

Java Disc. 1 22 17 3 0 10
Groups LSCC 85 61 69 7 54 46

In 25 51 53 3 7 24
Out 78 43 50 36 21 14
Tubes 47 15 56 0 33 0
Tendrils 34 47 48 12 6 8

JGNash Disc. 0 16 17 6 6 4
LSCC 28 48 43 20 0 1
In 0 28 28 0 0 0
Out 45 57 54 15 9 7
Tubes 0 100 0 100 0 0
Tendrils 24 69 68 3 7 3

systems analyzed in this work. Following, we discuss the

results for each software system analyzed in this study:

• DBUnit: LSCC and Out are the components with the

highest relative number of classes with critical values

of AC. All the components, except Disconnected, have

a high percentage of classes with critical values of

LCOM and COR. Out is the only component which

have classes with critical values of DIT. However, the

percentage of classes with critical values of DIT in

Out is very low, about 7%. None of the components

has a high percentage of classes with critical values of

PF or PM.

• Freecol: LSCC and Out have the highest relative

number of classes with critical values of AC. All the

components, except Tendrils, have a high percentage

of classes with critical values of LCOM and COR.

Tendrils is the only component with a high percentage

of classes having critical values of DIT, about 71%.

Roughly 27% das classes of Out have critical values

of PF. In all the components, just a few percentage of

Table V
PERCENTAGE OF CLASSES WITH CRITICAL SOFTWARE METRIC VALUES

Name Component AC LCOM COR DIT PF PM
Java Disc. 0 18 18 0 5 18
msn LSCC 66 70 66 0 22 22
library In 7 87 89 0 4 10

Out 73 73 58 1 18 19
Tubes 30 78 86 0 6 6
Tendrils 22 69 69 0 9 9

Jsch Disc. 2 49 53 0 9 0
LSCC 56 62 43 0 12 18
In 18 70 71 0 8 11
Out 58 42 33 25 0 8
Tubes 50 50 0 0 0 0
Tendrils 28 71 57 14 14 0

JUnit Disc. 0 0 0 0 3 3
LSCC 22 22 22 0 0 11
In 29 61 44 2 0 4
Out 75 75 50 25 25 25
Tubes 40 90 8 0 10 0
Tendrils 39 53 55 10 3 7

Logisim Disc. 2 25 23 18 2 8
LSCC 51 67 75 15 12 13
In 21 74 84 2 4 10
Out 53 50 52 14 10 11
Tubes 73 47 63 0 5 10
Tendrils 33 69 68 14 6 20

MeD’s Disc. 0 17 10 0 10 10
LSCC 25 26 23 9 7 7
In 7 27 20 20 7 0
Out 47 51 49 19 20 10
Tubes - - - - - -
Tendrils 0 28 28 28 0 0

Phex Disc. 0 8 9 3 12 5
LSCC 29 57 56 14 3 4
In 6 47 47 23 6 12
Out 55 56 56 10 25 12
Tubes 10 80 80 10 0 10
Tendrils 14 60 62 7 9 6

Squirrel Disc. 0 14 14 2 11 10
LSCC 25 39 37 6 2 5
In 19 43 43 2 2 5
Out 43 41 38 17 14 9
Tubes 37 74 49 12 0 0
Tendrils 22 56 48 12 14 6

classes have critical values of PM.

• Hibernate: LSCC, Out and Tubes have the highest

relative number of classes with critical values of AC.

All the components, except Disconnected, have a high

percentage of classes with critical values of LCOM

and COR. Tendrils and Out are the only components

with classes having critical values of DIT, 3% and

1%, respectively. There is no component that stands

out about the percentage of critical PF. LSCC is the

component with the highest percentage of classes

having critical values of PM.

• Jasper Reports: LSCC, Out and Tubes are the

components with the highest relative number of classes

with critical values of AC. All the components, except

Disconnected, have a high percentage of classes with
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critical values of LCOM and COR. LSCC has the

highest relative number of classes having critical

COR, about 90%. Tendrils and Out are the only

components with classes having critical values of DIT.

Nevertheless, these percentages are very low, about

2%. In this software, Out, Tubes and Tendril have a

high percentage of classes with critical PF, 26%, 30%

and 21%, respectively. LSCC, Out and Tubes are the

components with the highest percentage of classes

with critical PM, 25%, 25% and 23%, respectively.

• Java Groups: LSCC and Out have the highest relative

number of classes with critical values of AC. All

the components have a relevant percentage of classes

with critical values of LCOM and COR. Out have the

highest percentage of classes with critical DIT, 36%.

LSCC and Tubes exhibit the highest percentages of

classes with critical PF, 54% and 33%, respectively.

LSCC also has the highest percentage of classes with

critical PM, 46%.

• JGNash: Out has the highest proportion of classes

having critical AC. In this program, LCOM and COR

exhibit a very disparate result: 100% of the classes

from Tubes are critical according to LCOM, whereas

none class of this component is critical according COR.

An explanation for this particular result is that Tubes
is a very small component in this program. Regarding

the small size of Tubes, LSCC is the component with

the highest percentage of classes having critical DIT,

about 20%. None of the components present a high

proportion of classes with critical values PF or PM.

• Java Msn Library: LSCC and Out have the highest

relative number of classes with critical values of AC.

All the components, except Disconnected, have a high

proportion of classes with critical LCOM and COR.

Only Out has classes with critical values of DIT, but

in a very small proportion. LSCC and Out also have

the highest relative number of classes with critical

values of PF, 22% and 18%, respectively. LSCC, Out
and Disconnected have the highest relative number of

classes with critical values of PF, 22%, 19% and 18%,

respectively.

• Jsch: LSCC, Out and Tubes are the components with

the highest relative number of classes with critical

values of AC. However, Tubes is very small in this

program. Out is the component with the highest

proportion of classes having critical DIT, 25%. LSCC
and Tendrils are the components with the highest

percentages of classes having critical PF, whereas

LSCC and In have the highest proportion of classes

with critical PF.

• JUnit: Out is outstandingly the component with the

highest proportion of classes with critical AC, 75%.

All the components have significant proportions of

classes with critical values of LCOM and COR.

However, LSCC is the component with the lower

proportion of classes with critical LCOM and COR,

20%. In Tubes, the results of LCOM and COR did not

show concordance. Similar to JGNash and Jsch, JUnit

also has a very small Tubes. Out is the component

with the highest proportion of classes having critical

DIT, PM and PF.

• Logisim: Tubes has the highest proportion of classes

with critical AC. However, Tubes is a very small

component in this software system. Thus, LSCC
and Out are the most relevant components regarding

the proportion of classes with critical AC in this

software system. All the components have substantial

proportion of classes with critical LCOM and COR.

With the exception of In and Tubes, which are very

small components in this software system, all the

other components have roughly equal proportions of

classes with critical DIT. LSCC is the component with

the highest proportion of classes having critical PF,

whereas Tendril has the highest proportion of classes

with critical PM.

• Med’s Movie Manager: LSCC and Out have the

highest proportion of classes with critical AC. Out is

the component with the highest proportion of classes

with critical LCOM and COR, about 50%. Tendrils
has the highest proportion of classes with critical DIT,

28%. Out is the component with the highest proportion

of classes having critical values of PF and PM.

• Phex: Out has the highest proportion of classes with

critical values of AC. All the components, except

Disconnected, have significant proportion of classes

with critical LCOM and COR. In and LSCC have

the highest proportion of classes with critical DIT.

However, In is a very small component in this software

system. Out has the highest proportion of classes with

critical PM and PF.

• Squirrel: Out has the highest proportion of classes

with critical values of AC. Although Tubes has also

a high proportion of classes with critical AC, it is a

very small component of Squirrel. All the components,

except Disconnected, have significant proportion of

classes with critical LCOM and COR. Out and Tendrils
are also the components with the highest proportion

of classes having critical values of DIT, PF and PM.

However, Tendrils is a very small component in this
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(a)

(b)

Figure 3. Mean percentage of classes with critical values of AF and DIT.

program.

These results indicate that, although the programs an-

alyzed in this work have different types and sizes, the

distributions of their classes among the components of Little

House are very similar, regarding the critical values of the

software metrics.

C. Data Summarization

Figures 3, 4 and 5 summarize the data, showing the mean

percentage of classes with critical values of the metrics per

component.

The results of this study show that, in the case of the

metric afferent couplings, Out and LSCC have the highest

percentage of classes with bad or regular score. However,

Out is the component with the highest percentage of classes

in this situation. Tubes also has a high percentage of classes

with critical AC.

There is no component of Little House that outstandingly

has a higher percentage of classes with LCOM or COR

in the bad or regular ranges when comparing with the

other components. Moreover, most of the software systems

analyzed in this work have a high proportion of classes

with critical LCOM and COR in all their components. This

characteristic might be due the evolution of the programs.

The results of a previous research of the authors have shown

that as a software system evolves, the internal quality of

its classes degrades [19]. A curiosity on this result is that

(a)

(b)

Figure 4. Mean percentage of classes with critical values of LCOM and
COR.

despite LCOM and COR are different metrics, they had the

same behavior in this study.

Out and Tendrils are the components with the highest

percentage of classes having DIT greater than the mean

value of this metric. Tubes also has a high percentagem of

classes with critical DIT. This result shows that, in general,

classes from those components have a higher DIT value

when compared to classes of the other components. Hence,

Out and Tendrils are characterized by the use of inheritance,

and Out is characterized by having deeper inheritance trees.

Out is the component with the highest percentage of

classes having number of public fields in the bad or regular
ranges. LSCC and Tubes have the second highest percentages

of classes in this situation. LSCC is the component with

the highest percentage of classes having number of public
methods in the bad or regular ranges. Out has the second

highest percentage of classes in this situation. This result

indicates that classes from LSCC and Out are characterized

by a large interface size, since they tend to provide a large

number of services. This might be a reason for the inher-

ent characteristics of these components: Out is the server
component, and LSCC is the largest strongly connected

component.

The main conclusion drawn from these results is that, in

the practice, the software systems are structured in such a

way their classes are distributed into six components, accord-

ing to Little House. In most cases, two of those components,
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(a)

(b)

Figure 5. Mean percentage of classes with critical values of PF and PM.

Out and LSCC, have the highest percentage of classes with

critical values of the software metrics. Considering that

those metrics are able to assess the internal properties of

the classes, this result means that those components are

characterized by classes with potential design deviances. A

reasonable implication of this result for the practice is that

classes from Out and LSCC should be carefully considered

in tasks such as refactoring and maintenance. Applying Little

House might be useful to identify those classes graphically,

and to explore the way they are connected to other classes

in the system.

VI. LIMITATIONS

The analysis performed in this work is based in thresholds

of software metrics. The evaluation of the thresholds are be-

yond the scope of this paper. Ferreira et al. [16] describe the

results of an evaluation of the used thresholds. Nevertheless,

those thresholds are a recent proposal and ideally they should

be evaluated by the Software Engineering community, espe-

cially in real scenarios of Software Engineering.

To verify which components of Little House concentrate

critical classes, we considered the regular and bad ranges

of the metrics. That is, we assumed that if a class is not

evaluated as good, it should be carefully considered when

tasks such as maintenance are performed in the system.

Although this assumption has not been empirically validated,

it is an reasonable premise, since the good ranges of the

metrics correspond to well known design principles.

The sample of programs analyzed in this work are from

different application domain and of varying size. In spite of

those differences among them, their results are very similar.

Although the sample is relevant, it is not possible to ensure

that the observed results can be generalized to other software

systems.

VII. CONCLUSION

Little House is a model of the macroscopic topology of

structures of object-oriented software systems. According to

Little House, a software system can be modeled as a graph

with six nodes or components. Little House is a practical

view of how classes within a software system are connected

one to another. This work carried out an empirical study in

order to detail characteristics of Little House. In particular,

this work aimed to characterize the components of Little

House by means of software metrics.

The results of the present research showed that Little

House have two critical components: Out and LSCC. Out
is the component of Little House whose classes are used by

classes from any component of Little House, but only uses

classes from Out. LSCC is the largest strongly connected

component of Little House. Hence, changes in classes from

these components may have a large impact in the system as

hole. Out and LSCC have the highest percentage of classes

with software metric values considered as bad or regular.

The main implication of this finding is that classes from

these components should be carefully considered in tasks

such as refactoring and maintenance.

This work and the previous one in which Little House was

defined are a novel research on defining and characterizing

a generic topology of software structures. In a recent work,

we have investigated how software structures evolves by

means of Little House [20]. The results of that work indicate

that, as a software system evolves, LSCC and Out are

the components that suffer more degradation. Nevertheless,

future works are needed to provide a deeper characterization

of Little House:

• A relevant question raised from this research is the

correlation of Little House and error proneness. An

empirical study needs to be carried out in order to

determine if there is any component of Little House

that has more error occurrences over the time.

• Another important issue is concerned with change

propagation. This study revealed that Out and LSCC
are the most critical components in terms of software

metric values. A hypothesis drawn from this finding is

that changes in classes from Out and LSCC may have

a high impact in the system. However, it is necessary

to verify this hypothesis empirically.

• It is also important to verify whether there will be any

pattern of qualitative characteristic of the components

of Little House. One of the questions to be answered in
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this aspect is the relationship among Little House and

patterns such as MVC.

• Moreover, the findings of the present work may be

used for developing new approaches of software main-

tenance and refactoring.

• New approaches of software visualization may also be

defined based on Little House.
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