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Abstract The Hindley-Milner type system imposes the restriction that
function parameters must have monomorphic types. Lifting this restric-
tion and providing system F “first class” polymorphism is clearly desir-
able, but comes with the difficulty that inference of types for system F is
undecidable. More practical type systems incorporating types of higher-
rank have recently been proposed, that rely on system F but require
type annotations for the definition of functions with polymorphic type
parameters. However, these type annotations inevitably disallow some
possible uses of higher-rank functions. To avoid this problem and to pro-
mote code reuse, we explore using intersection types for specifying the
types of function parameters that are used polymorphically inside the
function body, allowing a flexible use of such functions, on applications
to both polymorphic or overloaded arguments.

1 Introduction

The Hindley-Milner type system [9] (HM) has been successfuly used as the basis
for type systems of modern functional programming languages, such as Haskell [23]
and ML [20]. This is due to its remarkable properties that a compiler can in-
fer the principal type for any language expression, without any help from the
programmer, and the type inference algorithm [5] is relatively simple. This is
achieved, however, by imposing some restrictions, a major one being that func-
tion parameters must have monomorphic types.

For example, the following definition is not allowed in the HM type system:

foo g = (g [True,False], g [’a’,’b’,’c’])

Since parameter g is used with distinct types in the function’s body (being
applied to both a list of booleans and a list of characters), its type cannot be
monomorphic, and this definition of foo cannot thus be typed in HM.

In contrast, higher-ranked polymorphic type systems such as Girard-Reynolds
system F [7,25] allow universal quantifiers to appear within a type. In a language
based on system F, foo could be assigned, for example, type
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(∀a.[a]→ [a])→ ([Bool],[Char])

Function foo could then be used, for example, in application (foo reverse),
where reverse computes the reversal of a list, having type ∀a.[a]→ [a].

The above type for foo is a rank-2 type, as it contains quantifiers to the left
of the function arrow. Other higher-ranked types could also be assigned to foo.
For example, foo could be assigned type (∀a.[a] → Int) → (Int,Int) in an
application such as (foo length), where length has type ∀a.[a]→ Int.

These two types are however incomparable in system F. In other words,
system F lacks principal types for expressions: a single expression may be typeable
with two or more incomparable types, where neither is more general than the
other. As a consequence, type inference cannot always choose a single type and
use it throughout the scope of a let-bound definition. In particular, there exists
no principal type for the above definiton of foo, such that all others follows from
it by a sequence of instantiations and generalizations.

Another drawback for the use of system F as the basis for a programming
language is that complete type inference in this system is undecidable [31].3

In order to cope with these problems, more practical type systems have been
recently proposed as a basis for the support of higher-ranked polymorphism in
programming languages. The main idea is to require the programmer to sup-
ply a type annotation for the definition of a function with polymorphic type
parameters, thus avoiding possible ambiguities on its type and also providing
type information that can be used for guiding type inference. Some relevant
works along this line are MLF [15,16], FPH [30] and Flexible Types [18,17]. These
type systems differ on the changes that are introduced to the Hindley-Milner
type system, particularly on the choice of type annotations required and on the
strategy used for type inference.

Lack of principal types and the need for type annotations are not the only
issues related to avoiding the restriction of monomorphism of function parame-
ters. The annotation of a higher-ranked polymorphic type for a function (or the
annotation of a quantified type for a function parameter) inevitably restricts the
contexts where the function may be used. For example, if the type annotated for
foo is (∀a.[a] → [a]) → ([Bool],[Char]), none of the following applications
can be type-checked:

foo length where length has type ∀a.[a]→ Int

foo head where head has type ∀a.[a]→ a
foo listMaybe where listMaybe has type ∀a.[a]→ Maybe a

Modern functional programming languages already include other useful ex-
tensions to HM and it is desired that higher-ranked functions work well in con-
junction with these extensions. In particular, it is desirable that higher-ranked

3 Kfoury and Tiuryn have indeed also proved undecidability of typeability for any
subset of system F with rank ≥ 3 [13].



functions work well in conjunction with the mechanism of type classes [10,8],
used in Haskell to support overloading.

Consider, for example, the use of foo in the following Haskell examples:

foo allEqual where allEqual :: ∀a. Eq a⇒ [a]→ Bool

foo sort where sort :: ∀a. Ord a⇒ [a]→ [a]
foo nub where nub :: ∀a. Eq a⇒ [a]→ [a]
foo fromEnum where fromEnum :: ∀a. Enum a⇒ a→ Int

The type of each of the above arguments is a constrained polymorphic type
(also called a predicated type). In Haskell, a type class denotes a family of
types (instances) on which certain values (the member functions) are defined.
For example, the equality operator (==) has type ∀a. Eq a ⇒ a → a → Bool,
where the class constraint Eq a indicates that equality is not parametrically
polymorphic, but only works for those types that are an instance of the Eq class.
In other words, class constraints restrict the possible types to which quantified
type variables can be instantiated. Class constraints introduced on the types
of overloaded symbols are also propagated to the types of expressions defined
in terms of these symbols. For example, the constraint on the type of (==) is
propagated to the type of function allEqual, which checks that all elements
of a given list are equal, and also to the type of function nub, that removes
duplicate elements in a given list.4

Type system QMLF [19] is, to our knowledge, the only work that investigates
how higher-ranked polymorphism can work in conjunction with constrained poly-
morphism. It extends the MLF type system, allowing predicate constraints (such
as class constraints) to be specified on higher-ranked types. For example, in this
system, foo could be annotated with type

(∀a. Ord a⇒ [a]→ [a])→ ([Bool],[Char])

Then, both applications (foo sort) and (foo reverse) are allowed in QMLF,
where the type of reverse can be instantiated to type ∀a.Ord a⇒ [a]→ [a].

But, again, this type annotation for foo forbids, for example, all other appli-
cations in the list above. In particular, application foo nub would not type check,
despite the fact that the type of nub differs from the type of foo’s parameter
only on its class constraint. Therefore, allowing type annotation of higher-ranked
types with predicate constraints does not solve all problems with respect to a
flexible use of higher-ranked functions.

In order to solve these problems and promote code reuse, we adopt a different
approach, allowing programmers to annotate intersection types for the types of
function parameters that are used with different types in the function’s body.
Intersection types [3] provide a conceptually simple and tractable alternative to
the impredicative polymorphism of System F, while typing many more programs
than the Hindley-Milner type system. The novelty of our work is the combination

4 A more detailed description of Haskell’s type classes may be found, for example,
in [23,1,28].



of intersection types with usual Hindley-Milner types and constrained polymor-
phism, in order to allow the definition of higher-ranked functions, with arguments
of intersection types, and application of such functions to both polymorphic or
overloaded arguments.

Several interesting applications which require higher-ranked polymorphism
have been described, for example, in [26,22,29], including the definition of monadic
abstractions, data type invariants, dynamic types and generic (or polytypic)
functions. In some of these examples, a higher-ranked type annotation serves ex-
actly the purpose of restricting the set of possible arguments for such a function,
thus guaranteeing that it has some desired properties (see, for example, chapter
3 on [29]). It should thus be made clear that we do not argue against the use-
fulness of this kind of polymorphism in a programming language, regarding our
work as complementary.

Our type system is named CTi, as it combines constrained polymorphic types
and intersection types. The intuitive ideas behind this system are explained in
Section 2. Section 3 briefly reviews the two main topics we want to combine
— constrained polymorphism and intersection types — and presents a formal
definition for the type language of our system. Type system CTi is defined in Sec-
tion 4 and Section 5 presents a corresponding type inference algorithm. Finally,
our conclusions are presented in Section 6.

2 Intersection parameters and polymorphic arguments

Let us consider what should be the principal (minimal) type of function foo,
which would allow any of the previously discussed arguments to be applied to
this function. Intuitively, an application (foo f) should be valid if f is a function
that can be applied to lists of booleans and to lists of chars. Also, (foo f) should
have type (τ1, τ2), where τ1 is the result type of an application of f to a list of
booleans and τ2 is the result type of an application of f to a list of chars. Using
intersection types, this can be written as (for ease of reference, the definition of
foo is repeated below):

Example 1. foo :: ∀b, c.([Bool]→ b ∧ [Char]→ c)→ (b,c)
foo g = (g [True,False], g [’a’,’b’,’c’])

The use of intersection types seems to us to be a natural choice for expressing
the type of a function parameter that is used with different types in the function’s
body, since only finite uses of this parameter can occur.

Differently from usual intersection type systems [3,14,4], our type system
is intended as a conservative extension of (HM + constrained polymorphism),
maintaining complete compatibility with this system in the absence of type an-
notations. Type annotations are required for the definition of higher-ranked func-
tions, where the types of parameters that are used polymorphically inside the
function’s body are specified in the form of intersection types.



An intersection type (τ1 ∧ τ2) may occur in the type of an expression only
to the left of the function type constructor, as, for example, in the above type
annotation for foo. A type (τ1∧τ2) may also occur in typing context assignments,
being introduced in this context by means of a type annotation.

Since intersection types may only occur to the left of function arrows, in-
tersection type elimination is restricted, in our system, to the rule for type
derivation of a term variable. Dually, intersection type introduction may occur
only in the type derivation for the argument of an application: assuming a term
t can be assigned type (τ1 ∧ τ2) → τ in a given typing context, an application
(t u) will be well typed in this context, if u can be assigned, in this context, a
type σ that can be instantiated both to τ1 and to τ2.

For example, application (foo reverse) is well typed according to this rule,
since the type annotated for foo can be instantiated to ([Bool] → [Bool] ∧
[Char] → [Char]) → ([Bool],[Char]), and the type of reverse can be in-
stantiated to both [Bool]→ [Bool] and [Char]→ [Char].

Analogously, application (foo sort) is well typed, in a context where Bool

and Char are both instances of type class Ord , since the type of sort can be
instantiated to both [Bool] → [Bool] and [Char] → [Char], in this context.
Each of the applications of foo discussed previously would also be valid, in a
context where the constraints on the type of the arguments could be satisfied.

The type for each use of an intersection type parameter in the body of the
function is derived by means of intersection type elimination. The appropriate
type is inferred according to the type required in each context where the pa-
rameter is used, in the same way as it happens for uses of overloaded symbols
in a type system for context-dependent overloading , such as Haskell’s type class
system. For example, the type for each use of parameter g in the body of foo

is inferred according to the type of the argument to which g is applied. Dually,
the type for each use of parameter x in the body of function f1, defined below,
is infered according to the types of the parameters of the function to which x is
given as argument.

Example 2. f1 :: (Bool ∧ Int)→ Int

f1 x = if x then (x+1) else (x-1)

Function f1 could be applied, for example, to an overloaded symbol, say o ::

C a⇒ a, declared in type class C, provided that there exist instance definitions
of this class for types Bool and Int.

Consider now the definition of function f2 below:

Example 3. f2 :: (Int→ Int ∧ Bool→ Bool)→ (Int ∧ Bool)→ (Int, Bool)
f2 h y = (h y, h y)



The types of parameters h and y on each application h y, in the body of func-
tion f2, can be determined by the type of the result of this function. Therefore,
type inference for function f2 is defined so as to use the additional information
provided by type annotations for selecting the appropriate type for h and y on
each application h y. On the other hand, if type annotations were provided only
for the parameters of f2, then four incomparable types could be derived for f2,
namely, (Int,Bool), (Int,Int), (Bool,Int) and (Bool,Bool); it would not
be possible then to determine the types of h and y on each application. No type
could then be infered for f2.

As in the case for overloaded symbols, an expression involving a function
parameter annotated with an to an intersection type may sometimes be ambigu-
ous. As an example, consider application s z in the body of function f3 defined
below:

Example 4. f3 ::(Int→ Int ∧ Bool→ Int)→ (Int ∧ Bool)→ Int

f3 s z = s z

In this case, there are two distinct possible type derivations for the body of
f3, corresponding to the two different possible choices for the types of parameters
s and z in application s z.

3 Constrained Polymorphism and Intersection Types

Haskell’s type class system is based on the more general theory of qualified
types [10], which extends Hindley-Milner type expressions with type constraints
(or predicates). A constrained polymorphic type has the form ∀ a. P ⇒ τ , where
P is a (possibly empty) set of class constraints and τ is a monomorphic type.
Here, and elsewhere, we use the notation a for a sequence of type variables
a1, . . . , an, for some n ≥ 0.

Type ∀ a. P ⇒ τ denotes the set of instances of τ that satisfy the predicates
in P . For example, type Int → Int → Bool is an instance of type ∀a. Eq a ⇒
a → a → Bool, if constraint Eq Int can be satisfied according to the visible
class and instance declarations, that is, if there exists an instance definition of
type Int for class Eq. In other words, each class constraint C τ is an assertion
that type τ must be an instance of class C.5

Satisfiability of class constraints can be described using an entailment rela-
tion, denoted by the symbol |=. If P and Q are finite sets of type predicates,
then the assertion that P |= Q means that predicates in Q are satisfied whenever
predicates in P are satisfied.6

5 For simplicity, we only consider here single parameter type classes, since the exten-
sion to multiparameter type classes [12,11] is orthogonal to the problem considered
in this paper.

6 See [10] for the general assumptions made about the predicate entailment relation
P |= Q, and for a definition of the entailment relation induced by Haskell class and
instance declarations.



The type language of our system extends the language of constrained poly-
morphic types, introducing intersection types. The syntax of types and expres-
sions of system CTi is given in Figure 1. Types are divided into monointersection
types (τ), that are used as types of expressions, and intersection types (ι), which
can be introduced only by a type annotation for a function parameter, and ap-
pear in the type of an expression only to the left of a function arrow.

Intersection types ι ::= τ | ι ∧ τ
Monointersection types τ ::= a | ι→ τ
Polymorphic types σ ::= ∀a. P ⇒ τ

Type constraint P,Q ::= ε | P, C τ

Typing context Γ ::= ε | Γ, (x : σ) | Γ, (x : ι)

Terms t, u ::= x Variable
| λx. t Functional abstraction
| λ(x :: ρ). t Annotated functional abstraction
| t u Function application
| let x = u in t Let-binding
| t :: σ Type annotated expression (σ closed)

Figure 1. Syntax of types and terms

The intersection type constructor (∧) is considered, as usual, to be commu-
tative and associative. We write τ ′ ∈ (τ1∧ . . .∧τn) if τ ′ = τi, for some 1 ≤ i ≤ n.

A typing context Γ conveys the typings of in-scope variables; Γ binds a term
variable, x, to its type, either σ or ι.

We define ftv(σ) to be the set of free type variables of σ, and extend this
function to typing contexts in the obvious way (note that an intersection type ι
does not have bound type variables):

ftv(Γ ) =
⋃
{ftv(σ) | (x : σ) ∈ Γ} ∪

⋃
{ftv(ι) | (x : ι) ∈ Γ}

The language of terms of type system CTi is the usual language of HM aug-
mented with type annotations on both terms (t :: σ) and lambda-bound variables
(λ(x :: ι). t). We assume that type annotations σ are closed , that is, they have
no free type variables.7

7 Open type annotations, which require lexically-scoped type variables [27], are
avoided, because this introduces complications that are out of the scope of this
work.



4 Typing Rules

The rules of type system CTi are defined in Figure 2. A typing judgement has
the form

P ; Γ ` t : τ

meaning that type τ may be assigned to term t, in typing context Γ , if all
constraints in P are satisfied, according to the constraint entailment relation,
P |= Q, defined by the program class and instance declarations.

P ; Γ ` t : τ

`inst σ ≤ P ⇒ τ

P ; Γ, (x : σ) ` x : τ
(VAR)

τ ∈ ι
P ; Γ, (x : ι) ` x : τ

(VARi)

P ; Γ, (x : τ ′) ` t : τ

P ; Γ ` λx. t : τ ′ → τ
(ABS)

P ; Γ, (x : ι) ` t : τ

P ; Γ ` λ(x :: ι). t : ι→ τ
(ABSA)

P ; Γ ` t : ι→ τ
Q; Γ `∧I u : ι

P,Q; Γ ` t u : τ
(APP)

Γ `gen u : σ
P ; Γ, (x : σ) ` t : τ

P ; Γ ` let x = u in t : τ
(LET)

Γ `gen t : σ
`inst σ ≤ P ⇒ τ

P ; Γ ` (t :: σ) : τ
(ANNOT)

Γ `gen t : σ `inst σ ≤ P ⇒ τ

P ; Γ ` t : τ
a = ftv(P ⇒ τ)− ftv(Γ )

Γ `gen t : ∀a. P ⇒ τ
(GEN)

Q |= [a 7→ τ ′]P

`inst ∀a. P ⇒ τ ≤ Q⇒ [a 7→ τ ′]τ
(INST)

P ; Γ `∧I t : ι

Pi; Γ ` t : τi, for i = 1, . . . , n

(P1, . . . , Pn); Γ `∧I t : τ1 ∧ . . . ∧ τn
(GENi)

Figure 2. Type system CTi

The type system is presented in a syntax-directed form, where all type deriva-
tions for a given term t (if there are any) have the same structure, uniquely de-



termined by the syntax structure of t. A syntax directed-formulation for a type
system is closer to type inference, making it easier to derive the type inference
algorithm directly from the type system.

The type rules presented in Figure 2 that are related to the handling of
constraints are the usual ones in a syntax-directed type system for constrained
polymorphism [10]. Type constraint introduction and polymorphic generalisation
are restricted to the type derivation rule for let-bindings (LET), and are defined
in Figure 2 by means of the auxiliary judgment

Γ `gen t : σ

The rule for this judgment essentially says that all constraints on the type vari-
ables of a type must be moved from the global context to this type before
universal quantification of its type variables.

Dually, polymorphic instantiation and type constraint elimination are re-
stricted to rule (VAR). Constrained polymorphic instantiation is defined in Fig-
ure 2 by means of the auxiliary judgement

`inst σ ≤ P ⇒ τ

Notation [a 7→ τ ′], used in this rule, is an abreviation for [a1 7→ τ ′1, . . . , an 7→ τ ′n],
which represents the capture-avoiding substitution that maps each type variable
ai to monointersection type τi, for i = 1, . . . , n.

Rule (INST) formalizes constrained polymorphic type instantiation: type
∀a. P ⇒ τ may be instantiated to type Q ⇒ [α 7→ τ ′]τ , provided the set of
constraints [α 7→ τ ′]P is entailed by the set of constraints Q, according to the
assumed constraint entailment relation. For example, the usual class and in-
stance definitions for class Eq a in Haskell induce the relation Eq a |= Eq [a],
and thus type ∀a.Eq a ⇒ a → a → Bool can be instantiated to type Eq a ⇒
[a]→ [a]→ Bool.

The only new rules are (VARi), (ABSA) and (APP). Rule (VARi) defines the
type derivation for a term variable that is bound to an intersection type in the
typing context, by means of intersection type elimination. Rule (ABSA), very
similar to the usual rule (ABS), defines type derivations for lambda-abstractions
for which the type of the parameter is annotated.

Type derivation for an application (t u) may require intersection type intro-
duction for the derivation of the type of the argument (u), as discussed previously
in Section 2. This is dealt with by means of the special judgment

P ; Γ `∧I u : ι

The rule for the derivation of this judgment (GENi) formalizes the idea of in-
tersection type introduction, also collecting the constraints that apply on each
type τ ∈ ι into the global constraint context.

Type system CTi is a conservative extension of the qualified type system [10],
in the sense that, in the absence of type annotations, a judgment P ; Γ ` t : τ
is derived in system CTi if and only if it is also derived in the qualified type



system. This can be proved by noticing that, in the absence of type annotations,
no intersection type can be introduced in the typing context, neither can such a
type occur in the type of an expression. Thus, the new rules (VARi) and (ABSA)

of system CTi are never used for the derivation of the type of an expression
that does not include intersection type annotations. Moreover, the type rule for
application (APP) of system CTi reduces to the usual type rule for application
in the qualified type system, when only such expressions are considered.

Type inference can usually be derived almost directly from a syntax-directed
formulation for a type system. The idea is to substitute each type that must
be guessed in a type derivation rule by a fresh type variable, delaying guessing
until these types can be later determined, by means of unification (see eg. [21]).
This technique cannot yet be applied, however, to the rules defined in Figure 2,
because a different source of type guessing arises: on intersection type elimina-
tion, in rule (VARi), and on intersection type introduction, in the derivation of
a judgment P ; Γ `∧I u : ι, used in rule (APP). The idea is to use information
provided by type annotations as an additional context for guessing the appro-
priate type in these cases. Information provided by type annotations therefore
must be propagated inwards in a type derivation. The idea of taking advantage
of type annotations in this way is called bidirectional type inference [22], or local
type inference [24]. Bidirectional type inference for system CTi is presented in
the next section.

5 Bidirectional Type Inference

The bidirectional type inference rules for system CTi are presented in Figure 3.
The typing rules defined in this figure express the idea of propagating types
inwards, and describe two similar typing judgments:

P ; Γ `⇑ t : τ

means that, in a typing context Γ , term t can be inferred to have type τ , provided
that predicates in P are satisfiable.

P ; Γ `⇓ t : τ

means that, in a typing context Γ , term t can be checked to have type τ , provided
that predicates in P are satisfiable. The up-arrow (⇑) suggests pulling a type
up out of a term, whereas the down-arrow (⇓) suggests pushing a type down
into a term. The auxiliary judgments for type generalization, Γ `gen t : σ,
polymorphic instantiation, `inst σ ≤ P ⇒ τ , and intersection type introduction,
P ; Γ `∧I t : ι, are treated in the same way.

The main idea of the bidirectional typing rules is that a term might be
typeable in checking mode when it is not typeable in inference mode; for example
the term (λ(x :: Int ∧ Bool. x) can be checked with type (Int ∧ Bool) → Int,
but is not typeable in inference mode. On the other hand, if we infer the type
for a term, we can always check that the term has that type. That is:



P ; Γ `δ t : τ δ =⇑ ⇓

`inst σ ≤ P ⇒ τ

P ; Γ, (x : σ)`δ x : τ
(VAR)

τ ∈ ι
P ; Γ, (x : ι) `⇓ x : τ

(VARi)

P ; Γ, (x : τ ′)`δ t : (τ, P ′, Γ ′)

P ; Γ `δ λx. t : τ ′ → τ
(ABS)

P ; Γ, (x : ι)`δ t : τ

P ; Γ `δ λ(x :: ι). t : ι→ τ
(ABSA)

P ; Γ `⇑ t : ι→ τ
Q; Γ `∧I

⇓ u : ι

P,Q; Γ `δ t u : τ
(APP1)

(x : ι) ∈ Γ, for some ι
Q; Γ`⇑ u : τ ′

P ; Γ `⇓ x : τ ′ → τ

P,Q; Γ `δ x u : τ
(APP2)

(x1 : ι1) ∈ Γ and (x2 : ι2) ∈ Γ
∃ τ ′. (τ ′ → τ ∈ ι1) and (τ ′ ∈ ι2)

P ; Γ `δ x1 x2 : τ
(APP3)

Γ`gen⇑ u : σ

P ; Γ, (x : σ)`δ t : τ)

P ; Γ `δ let x = u in t : τ
(LET)

P,Q′;Γ `⇓ t : τ ′

`inst ∀a.Q′ ⇒ τ ′ ≤ Q⇒ τ

P,Q; Γ `δ (t :: ∀a.Q′ ⇒ τ ′) : τ
(ANNOT)

Γ`gen⇑ t : σ `instδ σ ≤ ρ

P ; Γ`⇑ t : τ
a = ftv(P ⇒ τ)− ftv(Γ ′)

Γ`gen⇑ t : ∀a. P ⇒ τ
(GEN)

τ ′ = [a 7→ τ ′′]τ
Q |= [a 7→ τ ′]P

`instδ ∀a. P ⇒ τ ≤ Q⇒ τ ′
(INST)

P ; Γ `⇓∧I t : ι

P ; Γ `⇓ t : τ for each τ ∈ ι
P ; Γ `⇓∧I t : ι

(GENi)

Figure 3. Bidirectional type inference for type system CTi

If P ; Γ `⇑ t : τ then P ;Γ `⇓ t : τ

Furthermore, the checking mode allows us to give to a term types that are
more specific than its most general type. In contrast, the inference mode may
only produce the most general type. For example, if a variable has type (∀a. a),
we can check that it has this type and also that it has types Int, Int → Int,
∀a. [a] → [a] etc. On the other hand, we will only be able to infer b, where b
is a fresh type variable.



Most of the rules in Figure 3 are the same in any direction δ, namely (VAR),
(ABS), (ABSA), (LET) and (ANNOT). They can be seen as shorthand for two rules
that differ only in the arrow direction.

Intersection type elimination, defined by rule (VARi), is not allowed in the
inference mode, since this would imply a nondeterministic choice for the type
of the variable, among the component types of the intersection type to which it
is bound in the typing context. In type checking mode, on the other hand, this
amounts to verifying that the type to be checked for the variable occurs in its
intersection type.

Analogously, intersection type introduction, defined by means of judgment
P ; Γ `⇓∧I t : ι is also only allowed in type checking mode, and amounts to
checking that each type τ ∈ ι can be derived for term t in context (P ; Γ ).

Type inference and checking for an application (t u) is now split into three
rules, in order that cases that require intersection type elimination can be treated
more properly. Rule (APP3) is used only for typing an application (t u) where
both t and u are variables (intersection type parameters), namely, x1 and x2,
bound to intersection types ι1 and ι2 in Γ , respectively. This case requires si-
multaneous intersection type elimination for derivation of the types for both x1
and x2. This is the case, for example, of each application h y in the body of
function f2 of Example 3, and also of application s z in the body of function
f3 of Example 4, both discussed in Section 2. Using the information provided
by the type annotation in the definition of function f2, one can check that the
first application h y in the body of this function may be assigned type Int, and
the second may be assigned type Bool. In a type inference algorithm based on
the bidirectional system, application (s z), in the body of function f3, can be
detected as ambiguous: this is done by imposing an additional condition on rule
(APP3), for checking that there exists a unique type τ ′ such that τ ′ → τ ∈ ι1 and
τ ′ ∈ ι2, where τ is known, in check mode. The implementation of type inference
and detection of ambiguity is briefly discussed at the end of this section.

Rule (APP2) is used only for typing an application (t u) where t is variable,
namely, x, bound to an intersection type ι in Γ . This is the case, for example,
of each use of parameter g in the body of function foo of Example 1. In this
case, intersection type elimination is required for inferring the type for x, and
the type inferred for the argument u provides an additional type context for the
intersection type elimination. In other words, a type τ ′ is firstly inferred for the
argument u, and knowledge of this type is then used for checking the type of x,
that is, for choosing a type τ ′ → τ among the component types of type ι bound
to x, where type τ is known in checking mode. Note that this choice is guaranteed
to be unique in check mode, but not in inference mode. This possible ambiguity
on the choice of the type for x also can be detected by a type inference algorithm
based on the bidirectional system, by imposing an additional condition on rule
(VARi), that requires that this choice must be unique.

Rule (APP1) is used in all other applications (t u) where the other two rules
for application do not apply, that is, when the term t is not a variable, or it is
a variable that is not bound to an intersection type in the given typing context.



In this case, we first infer a type ι → τ for function t, and then check that the
argument u has type ι. In this way we take advantage of the information given
by the parameter type of t, to provide an additional type context for determining
the type for the argument u. Notice that, even in checking mode, we ignore the
required type ι when inferring the type for the function t, because this additional
information is not important in this case.

Rule (APP1) accounts indeed for three distinct possible cases:

1. The parameter type for t is indeed an intersection type ι. In this case, type
checking for the type of u involves intersection type introduction, which is
driven by the required type ι. This is the case, for example, of applications
foo reverse and foo sort discussed in Section 2, where foo is the function
defined in Example 1.

2. The parameter type for t is not an intersection type, say, the type inferred
for t is τ ′ → τ , and u is a variable bound to an intersection type ιu. This is
the case, for example, of each use of parameter x in the body of function f1

of Example 2. In this case, checking for the type of u involves intersection
type elimination, which is driven by the required type τ ′.

3. The last case corresponds to usual applications where neither the function
parameter type nor the argument type are an intersection type. Note that,
in this case, rule (APP1) corresponds to the usual inference rule for an ap-
plication of constrained polymorphic type systems.

The correspondence between the bidirectional type inference defined in Fig-
ure 3 and type system CTi defined in Figure 2, is stated by the following theorems
(proofs are omitted for space reasons and will be provided in a technical report):

Theorem 1 (Soundness). If P ; Γ`⇑ t : τ then P ; Γ ` t : τ .

Theorem 2 (Completeness). If P ;Γ ` t : τ then P ; Γ `⇑ t : τ .

A bidirectional type inference algorithm that infers principal types for ex-
pressions of type system CTi can be derived directly from the rules of Fig-
ure 3, using the ideas described in [22], and providing an implementation for
the entailment relation P |= Q that is used in these rules. We have developed
an implementation for this algorithm, written in Haskell, which is available at
https://github.com/emcardoso/CTi.

Another important aspect of the type inference is detection of ambiguity.
There are two possible sources of ambiguity in system CTi: those arising from
the use of parameters annotated with an intersection type, and those arising
from the use of overloaded symbols. The first source of ambiguity is ruled out by
imposing appropriate conditions on rules (APP3) and (VARi), for checking that
when intersection type elimination is required, the appropriate type is uniquely
determined. Ambiguity arising from overloading can be treated as usual, that is,
by imposing a suitable syntactic condition over the principal type inferred for an
expression, that guarantees that this expression is not ambiguous. In the case
of a type system with single parameter type classes, a term t with inferred type

https://github.com/emcardoso/CTi


∀a. P ⇒ τ can be guaranteed to be nonambiguous if ftv(P ) − ftv(τ) = ∅, as
proposed in [10]. For multiparameter type classes a more appropriate condition
should be used (see, for example, [2] or [6]). A more detailed discussion of the
implementation of the type inference algorithm and the detection of ambiguity
will be presented in a further work.

6 Conclusion

This paper presents a type system, called CTi, that is a conservative extension of
the system Hindley-Milner plus type classes with the introduction of a restricted
form of higher rank polymorphism that allows to specify parameter types with
intersection types. A type inference algorithm that is sound and complete with
respect to the type system is also presented. A prototype of the type inference
algorithm has been implemented in Haskell. The higher rank polymorphism pro-
vided by CTi is complementary to the usual higher rank polymorphism of type
systems based on system F. There are expressions that can be typed in CTi that
cannot be typed in these other higher rank systems, and vice-versa.
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l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.
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