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Abstract. Static Single Information form (SSI) is a program representation that
enables optimizations such as array bound checking elimination and condi-
tional constant propagation. Transforming a program into SSI form has a non-
negligible impact on compilation time; but, only a few SSI clients, that is, op-
timizations that use SSI, require a full conversion. This paper describes the
SSI framework we have implemented for the LLVM compiler, and that is now
part of this compiler’s standard distribution. In our design, optimizing passes
inform the compiler a list of variables of interest, which are then transformed
to present, fully or partially, the SSI properties. It is provided to each client
only the subset of SSI that the client needs. Our implementation orchestrates
the execution of clients in sequence, avoiding redundant work when two clients
request the conversion of the same variable. As empirically demonstrated, in
the context of an industrial strength compiler, our approach saves compilation
time and keeps the program representation small, while enabling a vast array of
code optimizations.

1. Introduction
Static Single Information (SSI) form is a program representation introduced by Scott
Ananian [Ananian 1999]. This program representation redefines some variables at
program split points, which are basic blocks with two or more successors. SSI
form enables many compiler optimizations, because it allows an analyzer to aug-
ment variables with information inferred from the result of conditional branches.
A non-exhaustive list of potential SSI clients includes array bounds check elimina-
tion [Bodik et al. 2000], bitwidth analysis [Stephenson et al. 2000], flow sensitive range
interval analysis [Su and Wagner 2005], conditional constant propagation [Ananian 1999,
Wegman and Zadeck 1991], partial redundancy elimination [Johnson and Pingali 1993],
faster liveness analysis [Boissinot et al. 2009, Singer 2006], and busy expression elimi-
nation [Singer 2003].

Although the SSI representation suits the needs of many different compilation
passes – henceforth called clients, the majority of these clients require only a subset of
the SSI properties instead of a full conversion. This observation is important, because
converting a program to full SSI form is a time consuming endeavor. For instance, Bodik
et al. [Bodik et al. 2000]’s ABCD algorithm uses information from conditional branches
to put bounds on the value of variables used as array indices. Thus, it requires that only
integer variables used in conditionals bear SSI properties. Even less demanding is the
sparse conditional constant propagation algorithm described by Ananian [Ananian 1999]



and Singer [Singer 2006], which demands that variables used in equality comparisons be
in SSI form. On the other hand, the partial redundancy elimination algorithm described by
Johnson et al. [Johnson and Mycroft 2003] uses an analysis called anticipability. A non-
iterative computation of the anticipatable variables requires that all program variables be
in SSI form.

In this paper we describe an on-demand SSI conversion framework, which saves
compilation time and space in three different ways. First, it converts only a subset of
variables in the source program to SSI form. Clients provide to our module a list of
variables that must have the SSI properties, and only these variables are transformed.
Second, we provide two conversion modes for each variable: full and partial. If a
variable is fully converted into SSI form, then it presents the SSI properties tradition-
ally described in the literature [Ananian 1999, Boissinot et al. 2009, Singer 2006]. On
the other hand, if a variable is partially transformed, then it presents a restricted set
of properties, that we describe in this paper. The partial conversion fits the needs of
many SSI clients [Ananian 1999, Bodik et al. 2000, Singer 2006, Stephenson et al. 2000,
Su and Wagner 2005, Wegman and Zadeck 1991], and, contrary to the full conversion, it
uses a non-iterative algorithm, which is faster, as we empirically demonstrate. Third, our
SSI conversion algorithm is a state-full black-box. Because we allow different clients
invoking our converter in sequence, we log the SSI conversions that we perform, so that
subsequent requests on the same variable do not lead to redundant work being performed.

Our SSI framework is now part of the default distribution of the Low Level
Virtual Machine [Lattner and Adve 2004] (LLVM), version 2.6. LLVM is an indus-
trial strength compiler, used by companies like Cray 1 and Apple 2. We have imple-
mented two SSI clients: the ABCD algorithm of Bodik et al. [Bodik et al. 2000], and a
sparse conditional constant propagation (CCP) algorithm, similar to the one described by
Singer [Singer 2006, p.59]. When compiling the SPEC CPU 2000 benchmark suite, the
partial transformations that ABCD and CCP request are about 15 and 24 times faster than
fully converting a program to SSI. The SSI conversion is based on the insertion of spe-
cial instructions – σ-functions and φ-functions – in the source program. ABCD and CCP
generate approximately 6.5 and 10 times less special instructions than the full conversion.
We emphasize that the same infrastructure is used in the three transformations that we
have compared: CCP, ABCD and full; however, because we build the SSI representation
on demand, we give to each client only the program properties that it requires.

In Section 2 we review the SSI representation. In Section 3 we analyze the proper-
ties that many compiler optimizations previously described in the literature require from
a program representation, and we show how different subsets of SSI suit these needs. In
Section 4 we discuss our approach to build the SSI representation on demand. Section 5
validates our work with a series of experiments, and Section 6 concludes this paper.

2. Background on SSI
The term Static Single Information form seems to have been coined by Scott Ananian in
his master thesis [Ananian 1999]; however, program representations with similar proper-
ties have been described before [Johnson and Pingali 1993]. For instance, the SSU-form

1http://blogs.rapidmind.com/2009/05/27/why-we-chose-llvm/
2http://arstechnica.com/apple/news/2007/03/apple-putting-llvm-to-good-use.ars



1 int a=read();
2 if (a == 0) {
3 if (...) {
4 print(a);
5 }
6 }
7 print(a);

a = •
(• = a)?

(a1, a2) =σ a

(a4, a5) =σ a2

• = a5

a3 =ϕ [a1,a4,a5]
• = a3

a = •
(• = a)?

(a1, a2) =σ a

• = a2

a3 =ϕ (a1,a2,a2)
• = a3

(a) (b) (c)

Figure 1. Example of the use of SSI on information analysis.

(Single Static Use), described by Plevyak in his Ph.D dissertation, [Plevyak 1996], seems
to be equivalent to SSI, although we cannot verify this claim due to the lack of a formal
specification of SSU. Boissinot et al. [Boissinot et al. 2009] distinguish two main flavors
of the SSI form, which are not equivalent: strong, introduced by Ananian [Ananian 1999]
and weak, described by Singer [Singer 2006]. Any strong SSI form program is also a
weak SSI form program; thus, we will be using SSI as a synonym for Strong SSI. Ac-
cording to Boissinot et al., four properties characterize strong SSI form:

• pseudo-definition: there exists a definition of each variable at the starting point of
the program’s control flow graph.
• single reaching-definition: each program point is reached by at most one definition

of each variable.
• pseudo-use: there exists a use of each variable at the ending point of the program’s

control flow graph.
• single upward-exposed-use: from each program point it is possible to reach at

most one use of a variable, without passing by a previous use.

Figure 1(a) shows a program written in a C like language, and Figure 1(b) gives the control
flow graph of this program, in SSI form. The program in Figure 1(c) is not in SSI form,
as it contains a point exposed to two different uses of a2.

In order to convert a program into SSI form we need two special types of instruc-
tions: φ-functions and σ-functions. φ-functions are an abstraction used in the Static Single
Assignment form (SSA) [Cytron et al. 1991] to join the live ranges of variables. Any SSI
form program is a SSA form program. For instance, the assignment, v = φ(v1, . . . , vn),
at the beginning of a basic block B, works as a multiplexer. It will assign to v the value
in vi, if the program flow reaches block B coming from the ith predecessor of B.

The σ-functions are the dual of φ-functions. Whereas the latter has the functional-
ity of a variable multiplexer, the former is analogous to a demultiplexer, that performs
an assignment depending on the execution path taken. For instance, the assignment,
(v1, . . . , vn) = σ v, at the end of a basic block B, assigns to vi the value in v if con-
trol flows into the ith successor of B. Notice that variables alive in different branches of
a basic block are given different names by the σ-function that ends that basic block.

The insertion of φ and σ functions is a form of live range splitting. The live range
of a variable is the set of program points where that variable is alive. Variable v is said to
be alive at program point p if there is a path from p to a use of v that does not go through



any definition of v. Two algorithms for converting a program into SSI form have been
described in the literature: we have Ananian’s [Ananian 1999] pessimistic algorithm, and
Singer’s [Singer 2006] optimistic approach. We use the latter, as it subsumes the former.

There exists an interesting relationship between the live range of program vari-
ables and graphs. Chaitin et al. [Chaitin et al. 1981] have shown the intersection graph
of the live ranges of a general program can be any type of graph. In 2005, re-
searchers have shown that the intersection graphs produced from programs in SSA
form are chordal [Bouchez 2005, Pereira and Palsberg 2005]. Recently, Boissinot et
al. [Boissinot et al. 2009] showed that the interference graphs of programs in SSI form
are interval graphs, a subset of the family of chordal graphs.

3. Examples of SSI Clients
This section shows examples of compiler optimizations that use the SSI representation,
giving emphasis on the subset of SSI that each client needs. The SSI facilitates two types
of program analyses. First, it helps analyses that extract information from conditional
statements, such as constant propagation and array bound checks elimination. Second, it
facilitates sparse backwards analyses that associate information with the uses of variables.
Section 3.1 discusses examples in the former class, and Section 3.2 goes over the latter.

3.1. Information Analyses

Information analyses are among the main reasons behind the design of the SSI repre-
sentation. These analyses use information from conditional branches to enable com-
piler optimizations, such as removing redundancies inserted to ensure language safety.
For instance, Figure 2(a-c) shows three common Java idioms where exceptional cases
are identified by the programmer via conditional tests. However, similar tests will be
implicitly created by the java compiler to enforce the strongly typed nature of the lan-
guage [Arnold et al. 2005]. In the figures, these tests appear in bold face. In another
example, Figure 2(d) shows a Ruby program where a runtime test is used to handle in-
teger overflows. The code in Lines 3-4 is implicitly performed, at runtime, by the Ruby
interpreter; but, given the loop boundaries, this test will never be true.

Among the examples of redundant code elimination based on information anal-
yses we cite Bodik et al.’s ABCD algorithm [Bodik et al. 2000] and the sparse condi-
tional constant propagation method of Wegman and Zadeck [Wegman and Zadeck 1991].
Ananian describes a long list of information analyses when introducing the SSI represen-
tation [Ananian 1999]. Furthermore, many compilers already perform simple forms of
redundant check elimination. For instance, LLVM is able to eliminate simple boundary
checks inserted by the GNAT front-end used in the compilation of ADA programs.

In addition to removing redundant code, information analyses are also useful
to detect security vulnerabilities in programs [Rimsa et al. 2010], and to discover the
range of values that variables might assume. For instance, in Figure 2(a) we know
that any value of variable v used in the true branch of the conditional is less than
v.length. Examples of range analyses are the bitwidth inference engine of Stephen-
son et al. [Stephenson et al. 2000], the range propagation algorithm of Su and Wag-
ner [Su and Wagner 2005], and the range analyzis used by Patterson to predict the out-
come of branches [Patterson 1995].



1  int array[];
2  void s(int i, int v) {
3   if (i < v.length) {
4     if (i >= v.length)
5       throw new ArrayIndex-
        OutOfBoundsException();
6     v[i] = v;
7   } else {
8     // handle error
9   }
10 }

1  void f(Object o) {
2    if (o instanceof V)
3      if (o.getClass() != V)
4        throw new Class-
         CastException();
5      ((V) o).m();
6    else {
7      // handle error
8    }
9  }

1  int div(int a, int b) {
2    if (b != 0) {
3      if (b == 0)
4        throw new
         ArithmeticException()
6      return a / b;
7    } else {
8      // handle error
9    }
10 }

1  sum = 0
2  (1..10).each do |i|
3    if (sum + i > MAX_INT)
4      change sum to BigInt
5    sum += i
6  end

(a) (b)

(c) (d)

Figure 2. Examples of defensive programming idioms.

Although well known in the literature, these analysis and heuristics are described
using different program representations, whereas they all can be elegantly modeled as
constraint systems built on top of some subset of SSI form. In this sense, different clients
have different needs, and not every variable in the source program needs to be transformed
to meet the SSI properties. For instance:

• ABCD algorithm that removes redundant array bound checks [Bodik et al. 2000],
as in Figure 2(a), requires only that variables used in conditionals, and that repre-
sent either array indices or array lengths have SSI properties;
• in order to remove redundant type casts, as in Figure 2(b), a client must require

that variables used as operands of the instanceof function be in SSI form;
• in order to remove redundant divide-by-zero tests, as in Figure 2(c), we need that

numeric variables used in conditionals be in SSI form;
• the ABCD version we implemented requires any variable used in branches to be in

SSI form. So, the algorithm is used as a more general redundant test elimination,
that allows, for instance, to remove the test in Line 3 in Figure 2(d).

In general, information analyses require that only variables used inside condition-
als have the SSI properties. Furthermore, these variables do not have to show the SSI
properties in all the program points where they are alive. Consider, for example, the pro-
gram in Figure 1(a). It is possible to infer that the value of variable a, inside the innermost
if statement, is always 0. An SSI based constant propagation analysis would produce the
program in Figure 1(b), and would derive the constraints 〈a2 = 0〉 and 〈a4 = a2〉. But the
second constraint only exists because variable a4 was created to guarantee the SSI prop-
erty that no program point is reached by two different uses of the same variable. Thus, in
order to avoid redundancies, we allow clients to specify the representation in Figure 1(c),
which yields only the constraint 〈a2 = 0〉.



3.2. Backward Analyses

In addition to being useful for information analyses, the SSI representation also facilitates
sparse backward analyses. Singer [Singer 2003] gives two examples of such analyses:
very busy expressions, and the dual available expression analysis. An expression e is very
busy at program point p if e is computed in any path from p to the end of the program,
before any variable that is part of it is redefined. Such analysis, also called anticipatable
expressions analysis by Johnson and Pingali [Johnson and Pingali 1993], is useful for per-
forming optimizations such as partial redundancy elimination. Conversely, an expression
e is available at program point p if it is computed in any path from the beginning of the
program until p, and none of the variables that are part of e are redefined thereafter.

A sparse analysis associates information to variables, instead of program points.
That is, busy expressions associated to variable v are the busy expressions at the definition
point of v. Similarly, available expressions associated to v are the expressions available at
the program point where v is last used. The SSI form allows us to perform these analyses
non-iteratively [Singer 2003]. As another example, Boissinot et al. [Boissinot et al. 2009]
have shown how SSI speeds up the computation of liveness analysis. This is a dataflow
analysis that finds which are the live variables at each program point.

Contrary to the analyses described in Section 3.1, the backward dataflow analyses
demand the full SSI representation. That is, every program variable must present the SSI
properties discussed in Section 2. We show that the same infrastructure that supports
information analyses also supports the backward analyses described in this section.

4. Building Partial SSI
We convert a program into SSI form on demand. This means that a client gives to our
transformation pass a list of variables of interest, and we modify only these variables.
There are two modes of conversion, partial and full. We convert a variable to SSI form
via live range splitting and renaming. The difference between partial and full conversion
is the amount of live range splitting required.

4.1. Converting a Program to Full SSI Form

If a variable is fully converted to SSI form, then it meets the definition of strong SSI form.
This type of conversion is useful for the backward analyses described in Section 3.2.
To perform the full conversion, we use the algorithm designed by Singer [Singer 2006,
p.46]. This method, shown in Figure 3(a), combines Cytron et al.’s algorithm to insert φ-
functions [Cytron et al. 1991], and Singer’s algorithm to insert σ-functions [Singer 2006].

The insertion of σ-functions guarantees the single upward-exposed-use property.
This phase happens as follows: for each use of a variable v, Singer inserts a σ-function in
each basic block in the post dominance frontier of v. A basic block B2 post-dominates a
basic block B1 if every path, from the exit of the source program to B1 contains B2. If B2

post-dominates a predecessor of basic block B0, but does not post-dominates B0, then B0

is in the post-dominance frontier of B2. The σ-functions produce new uses of v, which
cause the insertion of more σ-functions. This process iterates until a fix-point is reached.

The insertion of φ-functions, necessary to guarantee the single reaching-definition
property, is the dual of the insertion of σ-functions, and it follows Cytron’s algo-



∀ block B that contains 
branch where v is used. 
add (v, ..., v)  =σ  v
at the end of B

(a)

(b)

rename
variables

rename
variables

∃ unmarked
instruction
v = •
at block B

∀ B' at the iterated 
dominance frontier of B, 
create v  =ϕ  (v, ..., v)
and mark v = • at B

∃ unmarked
instruction
• = v
at block B

∀ B' at the iterated post- 
dominance frontier of B, 
create (v, ..., v)  =σ  v
and mark • = v at B

Cytron'91 Singer'06

∃ unmarked
instruction
v = •
at block B

∀ B' at the iterated 
dominance frontier of B, 
create v  =ϕ  (v, ..., v)
and mark v = • at B

Cytron'91

Figure 3. (a) Singer optimistic algorithm to convert a program into SSI form (b)
Our algorithm to produce partial SSI form.

rithm [Cytron et al. 1991]. Whereas the insertion of σ’s requires post-dominance fron-
tiers and tracks uses of variables, the insertion of φ’s uses dominance frontiers and tracks
variable definitions. Iterations between the two boxes in Figure 3(a) happen because
the insertion of σ-functions create new definitions of variables, and force a new round
of placement of φ-functions. Additionally, the insertion of φ-functions also leads to the
insertion of σ-functions, because it creates new uses of variables. Once a fix-point is
reached, meaning that the properties stated in Section 2 have been attained, a renaming
pass converts the program into SSI form.

4.2. Converting a Program to Partial SSI Form

The information analyses described in Section 3.1 do not require that variables be fully
converted to SSI form. Instead, they need a representation that restricts the value range of
variables. The value range of a variable is the set of values that the variable may assume
during program execution. For instance, variable a in Line 1 of Figure 1(a) may assume
any value of the integer type in the Java language, thus, its value range is [−231, 231 − 1].
However, the conditional branch in Line 2 restricts the value range of a. Thus, in Line 3
of our example program, this range is [0, 0]. There exist two main events that may restrict
the value range of a variable v: an assignment to v and a conditional branch that tests v.

In order to be in partial SSI form, a variable must meet four properties. Three of
them were seen in Section 2: pseudo-definition, single reaching-definition and pseudo-
use. We call the fourth property the single upward-exposed-conditional. This property,
which is less general than Section 2’s single upward-exposed-use, is stated as follows:

• single upward-exposed-conditional: if v is used at a branch instruction i, then
from i it is possible to reach only one use of v without passing across another use.

Thus, in order to partially convert a variable v to SSI form we can add σ-functions at the
boundaries of basic blocks that end with a conditional branch where v is used. Returning
to our first example, variable a is fully converted to SSI form in Figure 1(b). On the other
hand, the same variable is only partially converted to SSI form in Figure 1(c). The branch
instruction (• = a)? is post-dominated by the use (a1, a2) = σ a.

The algorithm that we use to convert a program to partial SSI form is shown in
Figure 3(b). This algorithm has lower complexity than Singer’s, because the placement of
σ-functions is simpler. In order to convert a variable v to partial SSI form, we loop over
the uses of v, and for each use that is a conditional instruction, we create a σ-function in



a = •
(• = a)?

• = a

• = a

a = •
(• = a)?

(a, a) =σ a

• = a

• = a

a = •
(• = a)?

(a, a) =σ a

• = a

a =ϕ (a,a,a)
• = a

(a) (b) (c) (d)

a = •
(• = a)?

(a1, a2) =σ (a)

• = a2

a3 =ϕ (a1,a2,a2)
• = a3

1

2

3

4

Figure 4. Partially converting a program for information analysis. Full is given in
Figure 1(b).

the basic block that contains that use. Once all the uses of v have been visited, we proceed
to the insertion of φ-functions. The placement of φ-functions is the same as in Singer’s
method, but in the partial transformation this phase happens only once.

Figure 4 illustrates these concepts. Figure 4(a) shows the control flow graph of the
program used in Figure 1(a). We are interested in partially converting variable a into SSI
form. Variable a is used in Blocks 1, 3 and 4. Only the first use is a branch, so we insert a
σ-function after Block 1, (see Figure 4(b)). This σ-function defines two new instances of
variable a, because Block 1 has two successors. After σ-functions have been inserted, we
move on to the insertion of φ-functions. Since we now have two definitions of variable
a reaching Block 4, we insert a φ-function in the beginning of this block, as shown in
Figure 4(c). Finally, a renaming step will produce the program in Figure 4(d).

The algorithm in Figure 3(b) might insert more σ-functions than the minimal num-
ber necessary to guarantee the single-upward-exposed-conditional property. For instance,
we would insert a σ-function after the conditional in Figure 4(a), even if there were no
uses of variable a inside Block 3. In this case, variable a already has the single upward-
exposed-conditional property, but our algorithm is unable to see this fact. Tracing an
analogy with the SSA conversion algorithm, our method produces what we would call
the “maximal” [Briggs et al. 1998, p.7] partial-SSI representation. We opted to build
this simple representation, instead of the pruned form because the simpler approach is
faster [Singer 2006]. Whereas the latter construction requires an analysis to identify
which uses of variables reach branching points, the former simply inserts σ-functions
after conditionals.

4.3. Complexity Analysis

The complexity of converting a single variable to SSI form, using the algorithm in Fig-
ure 3(a) is computed as follows. The complexity of a round of insertion of σ-functions,
or φ-functions, is O(B2) [Cytron et al. 1991], where B is the number of basic blocks in
the source program. But as empirically demonstrated [Singer 2006], this algorithm is
O(B) in practice. There are, indeed, true O(B) algorithms for the placement of φ and
σ-functions (see Sreedhar et al [Sreedhar and Gao 1995]). The maximum number of al-
ternations between the insertion of φ and σ-functions is O(B); so, the total complexity of
the algorithm is O(B3).

The partial conversion has lower complexity. Inserting σ-functions is O(U),



a = •
(• = a)?

(a1, a2) =σ a

• = a2

a3 =ϕ (a1,a2,a2)
• = a3

(a1,1)
(a2,1)

(a3,4)

σ

ϕ

a:
1

2

3

4

a = •
(• = a)?

(a1, a2) =σ a

(a4, a5) =σ a2

• = a5

a3 =ϕ (a1,a4,a5)
• = a3

(a1,1)
(a2,1)
(a4,2)
(a5,2)

(a3,4)

σ

ϕ

a:

(a) (b) (c) (d)

Figure 5. Preventing clients that run in sequence from performing redundant
work.

where U is the number of conditional instructions using v. The complexity of insert-
ing φ-functions is O(B2). As in the full conversion, it is O(B) in practice. There is no
alternation between the insertion of φ and σ-functions; thus, the total complexity of the
partial conversion algorithm is O(U) +O(B2).

4.4. Orchestrating the Execution of Different Clients

A compiler might perform several passes on the same code, in order to carry out different
optimizations. This includes the possibility of separate clients of our SSI transformation
framework running on the same program. Hence, one of the objectives of our design is to
allow clients to execute in sequence, without having to perform redundant work.

Our implementation guarantees that SSI clients running in sequence will never
insert redundant σ or φ-functions into the source program. That is, let c1 and c2 be two
SSI clients running in sequence. Lets assume that c1 causes the insertion of σ1 or φ1

at program Point p1 to transform a variable v. If c2 also requests the conversion of v,
leading to the insertion of another σ instruction at p1, then nothing will happen, because
our SSI converter knows that instruction σ1 is already breaking the live range of v. To
avoid redundancy, our SSI implementation keeps an internal state: it maps each variable
to a table of pairs. Each pair consists of the identifier of either a σ or a φ-function, plus
a program point. Figure 5 shows these concepts. Figure 5(b) shows the table created
for variable a after some client requests the partial conversion of this variable, yielding
the program in Figure 5(a). Once a second client requests the full conversion of a, we
already know that no σ-function must be inserted at program Point 1. But the insertion
of a σ-function at program Point 2 would lead to the creation of a φ-function at program
Point 4. Again, we check a’s table to avoid inserting a new φ-function. Upon discovering
the instruction a3 = φ(a1, a2, a2), we change the two occurrences of a2 to a4 and a5,
as seen in Figure 5(c). Figure 5(d) shows the new table of variable a. Notice that this
data structure is not essential to avoid inserting redundant σ and φ instructions; we could
avoid it by looking at the current state of the intermediate representation. But it speeds
up redundancy checks: if not for the data structure we would have to go through the
parameters of φ and σ functions looking for occurrences of a variable before changing it.

5. Experimental Results
This section describes experiments that we have performed to validate our SSI framework.
Our experiments were conducted on a dual core Intel Pentium D of 2.80GHz of
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Figure 6. Execution time of partial compared with full SSI conversion. 100% is
the time of doing the full SSI transformation. The shorter the bar, the faster the
partial conversion when compared to the full conversion.

clock, 1GB of memory, running Linux Gentoo, version 2.6.27. Our framework runs
in LLVM 2.5 [Lattner and Adve 2004], and it passes all the tests that LLVM does. The
LLVM test suite consists of over 1.3 million lines of C code. In this paper we will be
showing only the results of compiling SPEC CPU 2000. We will use three different
clients of our SSI framework:

1. Full: converts a program to strong SSI form with the algorithm of Figure 3(a).
2. ABCD: generalizes ABCD algorithm for array bound checking elimina-

tion [Bodik et al. 2000]. We eliminate conditional branches on numeric inequali-
ties that can prove redundant, such as the redundant tests in Figures 2(a) and 2(d).

3. CCP: does conditional constant propagation, that is, it replaces the use of variables
that have a value range equal to a zero length interval [c, c] by the constant c. As an
example, this optimization replaces the use of variable a in Line 4 of Figure 1(a)
by the constant 0. This client requires that only variables used in equality tests,
e.g, ==, be converted to SSI.

When reporting the time of ABCD or CCP we show the time of running the algorithm in
Figure 3(b). The time of performing redundant branch elimination or conditional constant
propagation is not shown. Similarly, time reports for the full conversion include only the
time to run the algorithm in Figure 3(a).

The chart in Figure 6 compares the execution time of the three SSI clients. The
bars are normalized to the running time of the full SSI conversion. On the average, the
ABCD client runs in 6.8% and the CCP client runs in 4.1% of the time of the full conver-
sion. The numbers on top of the bars are absolute running times. The partial conversions
tends to run faster in clients with sparse control flow graphs, which present fewer condi-
tional branches, and therefore fewer opportunities to restrict the value ranges of variables.

Figure 7 compares the running time of our partial conversion algorithm with the
running time of the opt tool. This tool is part of the LLVM framework, and it performs
target independent code optimizations. Opt receives a LLVM bytecode file, optimizes it,
and outputs the modified file, still in LLVM bytecode format. The SSI clients are opt
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Figure 7. Execution time of partial SSI conversion compared to the total time
taken by machine independent LLVM optimization passes (opt). 100% is the total
time taken by opt. The shorter the bar, the faster the partial conversion.

passes. The bars are normalized to the opt time, which consists on the time taken by
machine independent optimizations plus the time taken by one of the SSI clients, e.g,
ABCD or CCP. Among the optimizations performed by opt we list partial redundancy
elimination, unreachable basic block elimination and loop invariant code motion. The
ABCD client takes 1.48% of opt’s time, and the CCP client takes 0.9%. To emphasize
the speed of these passes, we notice that the bars do not include the time of doing machine
dependent optimizations such as register allocation.

Figure 8 compares the number of σ and φ-functions inserted by the SSI clients.
The bars are the sum of these instructions, as inserted by each partial conversion, divided
by the number of σ and φ-functions inserted by the full SSI transformation. The numbers
on top of the bars are the absolute quantity of σ and φ-functions inserted. The CCP client
created 67.3K σ-functions, and 28.4K φ-functions. The ABCD client created 98.8K σ-
functions, and 42.0K φ-functions. The full conversion inserted 697.6K σ-functions, and
220.6K σ-functions. There is an apparent mismatch between the number of instructions
inserted and the time to do it. That is, in Figure 8 we see that about 10% to 15% of the
nodes are inserted for ABCD and CCP when compared to full SSI. But in Figure 6 we
see that this only takes 4% to 6% of the computation time. This fact happens because
full SSI requires iterations between the insertion of σ and φ nodes, whereas the partial
construction does not.

The chart in Figure 9 shows the number of σ and φ-functions that each SSI client
inserts per variable. The figure emphasizes the difference between the partial conversion
required by the two information analyses and the full SSI transformation. On the average,
for each variable whose conversion is requested by either the ABCD or the CCP client,
we will create 0.6 φ-functions, and 1.3 σ-functions. On the other hand, the full SSI
conversion will insert 6.1 σ-functions and 2.7 φ-functions per variable.

Figure 10 shows the number of variables that have been transformed by each
client. In two benchmarks, gcc and vortex, ABCD client has transformed more vari-
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Figure 8. Number of φ and σ-functions produced by partial SSI conversion com-
pared with full conversion. Values on top of bars denote absolute number of
instructions. 100% is the number of instructions inserted by the full conversion.

Figure 9. Average number of φ and σ-functions produced per variable.

gzip vpr gcc mes art mcf eqk crfty ammp par gap vor bzp2 twolf Total

ABCD 968 2K 38K 7K 361 292 211 4K 3K 3K 14K 20K 686 5K 100K

CCP 296 1K 24K 5K 56 78 74 2K 2K 2K 7K 17K 169 2K 62K

Full 1K 4K 36K 12K 376 360 807 4K 5K 4K 15K 13K 1K 6K 101K

Figure 10. Number of variables converted to SSI. We use shorter names.

ables than the full client. This fact happens because the full client transforms only vari-
ables that are alive across different basic blocks. ABCD and CCP clients, on the other
hand, use the partial conversion algorithm from Figure 3(b), which converts variables
used in conditionals, even when those variables are not alive outside the basic block where
they are used. Notice that, in this case, we will not have any use of the variable after the
conditional, and no σ or φ-functions will be inserted by the algorithm of Figure 3.



Figure 11. Percentage of σ and φ-functions saved by running clients in sequence.

The chart in Figure 11 compares the number of σ and φ-functions that we save by
running different SSI clients in sequence. We compute the bars as follows. Let c1 and c2
be two SSI clients, such that c1 inserts n1 special instructions (φ or σ functions) into the
source program, and c2 inserts n2. Let n1,2 be the number of special instructions generated
when both clients run in sequence. The bars represent the formula 1− (n1,2/(n1 + n2)).
This measure denotes the number of repeated instructions that are inserted by both clients
running independently, and that are saved when these clients run in sequence. Our frame-
work avoids the insertion of redundant instructions by keeping a record of variables that
each client transforms, as described in Section 4.

6. Conclusion

This paper has presented the design and implementation of a SSI conversion framework,
which is useful to several analysis and optimizations present in compiler back-ends. Our
implementation differs from previous works because it allows the client to specify which
variables should be converted into SSI. Furthermore, it allows a variable to be converted
into SSI partially, that is, only at those program points where SSI properties are required.
These two capacities of our framework allows it to be one order of magnitude faster than
traditional approaches to SSI generation. Our implementation has been deployed on the
LLVM compiler, and now is part of its official distribution.
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