
Design Pattern Smell Input Files Specification

Bruno. L. Sousa1, Mariza A. S. Bigonha1, Kecia A. M. Ferreira2

1Computer Science Department – Federal University of Minas Gerais (UFMG)
Belo Horizonte – MG – Brazil

2Department of Computing – Federal Center for Technological Education of
Minas Gerais (CEFET-MG) – Belo Horizonte – MG – Brazil

{bruno.luan.sousa,mariza}@dcc.ufmg.br, kecia@decom.cefetmg.br

1. Introduction
This document presents a specification of the XML and CSV files provided as input to the
Design Pattern Smell running. In addition to presenting a template for describing these
files, this document describes the function of each tag and attribute used to create the
XML file and each row and column used for create of CSV file.

The remainder of this document is organized as follows. Section 2 describes the
XML file used to represent of design pattern instances of a system. Section 3 describes
the CSV file used to indicate the classes or methods of a system that have the presence of
bad smell. Section 4 concludes this document.

2. XML Input Pattern
This section describes the XML input file format that should be provided for Desig Pattern
Smell. This file should contain information about design pattern instances, collected from
a particular software system. Figure 1 shows the template for creating the XML file, as
well as the main tags and attributes that should be used to describe the data.

Figure 1. Template for creating the input XML for Design Pattern Smell.

The format of this file was inspired by the output pattern used by a collection tool
of design pattern instances, called Design Pattern Detection1 [Tsantalis et al. 2006]. The
tags and attributes used in this document are described below.

• system: this tag should be used in the first line of the document. It informs to
Design Pattern Smell that the information within its scope refers to the data on
design patterns from a particular software.

1https://users.encs.concordia.ca/˜nikolaos/pattern_detection.html

https://users.encs.concordia.ca/~nikolaos/pattern_detection.html


• pattern: indicates that informations about instances of certain patterns (Factory
Method, Observer, Template Method, among other) will be informed within its
scope. The pattern tag should be accompanied by the following attributes:

– name: specifies to the Design Pattern Smell the name of design pattern,
whose instance informations is referenced.

• instance: this tag is used within the scope of the tag pattern. It indicates informa-
tion about the instances identifies for each design pattern, displaying the classes,
methods and attributes present in its composition. In addition to displaying in-
formation about the components of a particular instance, it indicates the role that
each component exerts on within the specific instance.
• role: indicats the role played by a component (class, method or attribute) within a

design pattern instance. This tag has the following attributes: name and element.
– name: this attribute indicates the role name of a component of its instance

of the pattern. The possible roles that may be used as value for this attribute
are indicated in the Table 1.

– element: indicates the name of the component (classe, method or at-
tribute) that makes up a particular instance of a design pattern and performs
the role defined by the name tag within that instance.

3. CSV Input Pattern
This section describes the format of the CSV input file that must be provided for Design
Pattern Smell. This file should contain information about artifacts (classes or methods)
with the presence of bad smell collected of a particar software system. Figure 2 shows
the template for creating of CSV file.

Figure 2. (i) Template for creating the CSV file for classes with bad smell; (ii)
Template for creating CSV file for methos with bad semll.

The first line, shown in Figure 2, is the default for any file with bad smell infor-
mation for use in Design Pattern Smell. It defines the header of this file, and tells the tool
the type of content displayed in each of the columns of that file.

The first column of the header is intended to specify the name of the artifact that
has the presence of a bad smell. As it is possible to observe in Figure 2, the name of this
column varies according to the granularity of the bad smell chosen for analysis.

The second column of the header indicates the Java format file in which the artifact
is stored. This column is default for both classes or methods. The third column indicates
the package that the specified artifact is contained. Finally, the other lines of this file
indicate the artifacts with bad smell.

Figure 3 shows an example CSV file with classes that have the presence of Data
Class bad smell, built for the Webmail system release 0.7.10.



Design Pattern Role Type of Component

Adapter-Command

Adapter/ConcreteCommand Class
Adaptee/Receiver Class
adaptee/receiver Attribute
Request()/Execute() Method

Bridge

Implementor Class
Abstraction Class
implementor Attribute
Operation() Method

Composite
Component Class
Composite Class
Operation() Method

Decorator

Component Class
Decorator Class
component Attribute
Operation() Method

Factory Method Creator Class
FactoryMethod() Method

Observer
Observer Class
Subject Class
Notify() Method

Prototype

Client Class
Prototype Class
prototype Attribute
Operation() Method

Proxy
Proxy Class
RealSubject Class
Request() Method

State-Strategy

Context Class
State/Strategy Class
state/strategy Attribute
Request() Method

Singleton Singleton Class
uniqueInstance Attribute

Template Method AbstractClass Class
TemplateMethod() Method

Visitor
ConcreteElement Class
Visitor Class
Accept() Method

Table 1. Design patterns supported by Design Pattern Smell and the possible
roles exercised within each design pattern.



Figure 3. CSV file with classes that have the Data Class bad smell, built for the
Webmail 0.7.10 system.

4. Conclusion
This document presented a description about the default XML and CSV input files, which
should be provided to Design Pattern Smell, as a requirement for their operation. It is
expected that the user will use this document as a guide for the construction of these files,
and will be able to take full advantage of Design Pattern Smell’s features in reserach and
analysis of co-occurrence between design patterns and bad smell in software systems.

References
[Fowler and Beck 1999] Fowler, M. and Beck, K. (1999). Refactoring: Improving the De-

sign of Existing Code. Addison-Wesley.

[Tsantalis et al. 2006] Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., and Halkidis, S. T.
(2006). Design pattern detection using similarity scoring. Software Engineering, IEEE
Transactions on, 32(11):896–909.


	1 Introduction
	2 XML Input Pattern
	3 CSV Input Pattern
	4 Conclusion

